

1

Introduction

 This document provides an introduction to the

hand-on of linear and non-linear causality

analysis. Guidance of necessary software

environment setup and installation will be

provided.

 The sample code cover time series analysis

techniques including unit root test, cointegration

test, VAR estimation, linear Granger causality

test and non-linear Granger causality test.

 We illustrate the techniques by going through a

simplified bivariate analysis with real economic

data.

2

Data

In this illustration, our data include information from

India, from 1950 to 2014 obtained from the

International Financial Statistics, the database of

International Monetary Fund.

India is selected as one the countries in the study

because it meets our criteria that the country should

have a population exceeding one million in 2017 and

the database has enough data in all the variables.

3

It is difficult to directly measure both financial

development and economic growth.

Economic growth is commonly measured using real

GDP per capita, see for example Gelb (1989),

Roubini and Sala-i-Martin (1992), King and Levine

(1993), and Demetriades and Hussein (1996).

Similar to these studies, a logarithm of real GDP per

capita is used to proxy economic growth and has

been denoted as Y.

4

For the variable to measure financial development, it

is a common practice (Gelb, 1989 and King and

Levine, 1993) to use a ratio of some broad measures

of the money stock to the level of nominal GDP.

However, Demetriades and Hussein (1996) argue

that this type of ratio may reflect more extensive use

of currency rather than an increase in the volume of

bank deposits.

To circumvent the limitation, they recommend

excluding currency in circulation from the broad

money stock.

In this illustration we follow their recommendation

and use the logarithm of the ratio of bank deposit

liabilities to nominal GDP as the first proxy for

financial development and represented as M.

5

We exhibit the summary statistics of where M and Y

are the logarithms of the ratio of bank deposit

liabilities to nominal GDP (M), and real GDP per

capita (Y), respectively, for India.

6

Methodology

In the literature on the subject of the relationship between

financial development and economic growth, academics,

such as Horng, et al. (2012) are interested in testing the

following two hypotheses:

H0
1 : financial development does not cause economic

growth, and

H0
2: economic growth does not cause financial

development.

Academics and practitioners, such as Horng, et al. (2012)

and Fan, et al. (2018) employ linear causality to study

whether there is any unidirectional or bidirectional

causality between financial development and economic

growth. Thus, they set H0
1′: financial development does

not cause economic growth if there is no linear causality

from financial development to economic growth.

7

However, in this illustration, we set

H0
1: financial development does not cause economic

growth if there is no linear and no nonlinear causality from

financial development to economic growth.

Similarly, definitions are set for H0
2′ and H0

2.

Ascertaining whether financial development and

economic growth are cointegrated is an important piece of

information. If financial development and economic

growth are cointegrated, we conjecture that both demand-

following and supply-leading theories hold so that

financial development and economic growth move

positively together.

8

Thus, in this illustration, we examine the following

hypothesis:

H0
3: financial development and economic growth are not

positively cointegrated.

9

In the following subsections, we will discuss cointegration

and linear and nonlinear causality tests to analyze the

relationship between financial development and economic

growth in developing countries. We first discuss the

cointegration approach in next subsection.

3.2.1 Cointegration

As mentioned in Section 3.1 M, D, and Y have been

designated to be the logarithms of the ratio of bank deposit

liabilities to nominal GDP (M), the ratio of claims on

private sector to nominal GDP, and real GDP per capita,

respectively. If all the variables (M, D, and Y) are

integrated in degree one, academics and practitioners will

be interested in examining whether there is any

cointegration relationship among the variables. To analyse

the issue, we employ the Johansen cointegration test

proposed by Johansen (1988), Johansen and Juselius (1990)

10

and Johansen (1991) as some studies, for example,

Gonzalo (1994), confirm that the Johansen cointegration

test performs better than the other cointegration tests,

namely the ADF test (Engle and Granger, 1987). In

addition, when GARCH errors exist in the model, Lee and

Tse (1996) conclude that the bias is not too serious when

using Johansen’s cointegration test if we compare its

performance with other cointegration tests.

Johansen and Juselius (1990) and Johansen (1991)

develop a multivariate maximum likelihood (ML)

procedure for the estimation of the cointegrating vectors.

According to Johansen’s procedure, the p-dimensional

unrestricted Vector Autoregression (VAR) model should

be first specified with k lags:

𝒁𝒕 = ∑ 𝑨𝒊𝒁𝒕−𝒊 + Ψ𝑫𝒕

𝑘

𝑖=1

+ 𝑈𝑡 (1)

11

where 𝒁𝒕 = [𝑀𝑡 , 𝐷𝑡 , 𝑌𝑡]′ is a 3 × 1 vector of stochastic

variables and 𝑀𝑡, 𝐷𝑡, and 𝑌𝑡 are to be the logarithms of

the ratio of bank deposit liabilities to nominal GDP, the

ratio of claims on private sector to nominal GDP, and real

GDP per capita in period 𝑡, respectively. 𝑫𝒕 is a vector of

dummies and 𝑨𝒊 is a vector of parameters. This VAR

could be rewritten as:

∆𝒁𝒕 = ∑ Φ𝑖∆𝒁𝒕−𝒊 + 𝚷𝒁𝒕−𝒊 + Ψ𝑫𝒕

𝑘−1

𝑖=1

+ 𝑈𝑡 . (2)

The hypothesis of cointegration is formulated as a

reduced rank of the 𝚷 matrix where 𝚷 = 𝛂𝛃′ such that 𝛂

is the vector or matrix of the adjustment parameter and 𝛃

is the vector or matrix of the cointegrating vectors.

According to Engle and Granger (1987), if the rank of 𝚷

(r) is not equal to zero, then r cointegrating vectors exist.

12

The number of cointegrating vectors is less than or equal

to the number of variables, which is 3 in our case. The

likelihood ratio (LR) reduced the rank test for the null

hypothesis of at most r cointegrating vectors is given by

the following Trace statistic, and for the null hypothesis of

r against the alternative of r+1 cointegrating vectors is

known as the maximal eigenvalue statistic

3𝜆𝑡𝑟𝑎𝑐𝑒 = −T ∑ ln (1 −

𝑚

𝑖=𝑟

𝜆𝑖+1) , 𝜆𝑚𝑎𝑥

= −T ln(1 − 𝜆𝑟+1) (3)

where 𝑚 is the maximum number of possible

cointegrating vectors which is 3 in our case, in this

illustration, 𝑟 = 0, 1, 2 and 𝜆1 > 𝜆2 > 𝜆3 denote

eigenvalues of their corresponding eigenvectors v =

(𝑣1, 𝑣2, 𝑣3).If the null hypothesis of r cointegrating vectors

is accepted, then the rank of the 𝚷 matrix equal to r and

there is exactly r cointegrating vector.

13

3.2.2 Granger Causality

Since our analysis presented in next section (see Table 1)

confirms that all the variables 𝑀𝑡 , 𝐷𝑡 , and 𝑌𝑡 are I(1),

academics and practitioners are interested in testing

whether there is any causality relationship among the

differences of the variables 𝑀𝑡 , 𝐷𝑡 , and 𝑌𝑡. We let 𝑚𝑡 =

∆𝑀𝑡, 𝑑𝑡 = ∆𝐷𝑡, and 𝑦𝑡 = ∆𝑌𝑡. This means that academics

and practitioners are interested in testing whether there is

any causality relationship among 𝑚𝑡, 𝑑𝑡, and 𝑦𝑡. Thus, in

this illustration we will test whether there is any linear

Granger causality and thereafter examine whether there is

any nonlinear Granger causality among the variables

𝑚𝑡, 𝑑𝑡, and 𝑦𝑡.

14

3.2.2.1 Linear Granger Causality

To test the linear causality relationship between two

vectors of stationary time series, we set 𝑥𝑡 =

(𝑥1,𝑡 , … , 𝑥𝑛1,𝑡)′ and 𝑦𝑡 = (𝑦1,𝑡 , … , 𝑦𝑛2,𝑡)′ say 𝑥𝑡 =

(𝑚𝑡 , 𝑑𝑡)′ and 𝑦𝑡 = (𝑦𝑡)′ , where there are 3 series in total.

Under this setting, one could construct the following

vector autoregressive regression (VAR) model:

(
𝑥𝑡

𝑦𝑡
) = (

𝐴𝑥[2×1]

𝐴𝑦[1×1]
) +

(
𝐴𝑥𝑥(𝐿)[2×2] 𝐴𝑥𝑦(𝐿)[2×1]

𝐴𝑦𝑥(𝐿)[1×2] 𝐴𝑦𝑦(𝐿)[1×1]
) (

𝑥𝑡−1

𝑦𝑡−1
) + (

𝑒𝑥,𝑡

𝑒𝑦,𝑡
)

(4)

where 𝐴𝑥[2×1] and 𝐴𝑦[1×1] are two vectors of intercept

terms, 𝐴𝑥𝑥(𝐿)[2×2] , 𝐴𝑥𝑦(𝐿)[2×1] , 𝐴𝑦𝑥(𝐿)[2×1] , and

15

𝐴𝑦𝑦(𝐿)[1×1] are matrices of lag polynomials, 𝑒𝑥,𝑡 and 𝑒𝑦,𝑡

are the corresponding error terms.

Testing the following null hypotheses: 𝐻0
1: 𝐴𝑥𝑦(𝐿) = 0

and 𝐻0
2: 𝐴𝑦𝑥(𝐿) = 0 is equivalent to testing the linear

causality relationship between 𝑥𝑡 and 𝑦𝑡 .There are four

different situations for the causality relationships between

𝑥𝑡 and 𝑦𝑡 in (1): (a) rejecting 𝐻0
1 but not rejecting 𝐻0

2

implies a unidirectional causality from 𝑦𝑡 to 𝑥𝑡 , (b)

rejecting 𝐻0
2 but not rejecting 𝐻0

1 implies a unidirectional

causality from 𝑥𝑡 to 𝑦𝑡 , (c) rejecting both 𝐻0
1 and 𝐻0

2

implies the existence of feedback relations, and (d) not

rejecting both 𝐻0
1 and 𝐻0

2 implies that 𝑥𝑡 and 𝑦𝑡 are not

rejected to be independent. Readers may refer to Bai, et al.

(2010) for the details of testing 𝐻0
1 and/or 𝐻0

2.

16

If the time series are cointegrated, one should impose the

error-correction mechanism (ECM) on the VAR to

construct a vector error correction model (VECM) in order

to test Granger causality between the variables of interest.

In particular, when testing the causality relationship

between two vectors of non-stationary time series, we let

∆𝑥𝑡 = (∆𝑀𝑡 , ∆𝐷𝑡)′ and ∆𝑦𝑡 = (∆𝑌𝑡)′ be the

corresponding stationary differencing series such that

there are 3 series in total. If 𝑥𝑡 and 𝑦𝑡 are cointegrated,

then instead of using the VAR in (1), one should adopt the

following VECM model:

(
∆𝑥𝑡

∆𝑦𝑡
) = (

𝐴𝑥[2×1]

𝐴𝑦[1×1]
)

+ (
𝐴𝑥𝑥(𝐿)[2×2] 𝐴𝑥𝑦(𝐿)[2×1]

𝐴𝑦𝑥(𝐿)[1×2] 𝐴𝑦𝑦(𝐿)[1×1]
) (

∆𝑥𝑡−1

∆𝑦𝑡−1
)

+ (
𝛼𝑥[2×1]

𝛼𝑦[1×1]
) ⋅ 𝑒𝑐𝑚𝑡−1 + (

𝑒𝑥,𝑡

𝑒𝑦,𝑡
) (5)

17

where 𝑒𝑐𝑚𝑡−1 is lag one of the error correction term, and

𝛼𝑥[2×1] and 𝛼𝑦[1×1] are the coefficient vectors for the

error correction term 𝑒𝑐𝑚𝑡−1. There are now two sources

of causation of 𝑦𝑡(𝑥𝑡) by 𝑥𝑡(𝑦𝑡), either through the lagged

dynamic terms ∆𝑥𝑡−1(∆𝑦𝑡−1) , or through the error

correction term 𝑒𝑐𝑚𝑡−1. Thereafter, one could test the null

hypothesis 𝐻0 : 𝐴𝑥𝑦(𝐿) = 0(𝐻0 ∶ 𝐴𝑦𝑥(𝐿) = 0) and/or

𝐻0 : 𝛼𝑥 = 0(𝐻0 ∶ 𝛼𝑦 = 0) to identify Granger causality

relation using the LR test.

18

3.2.2.2 Nonlinear Granger Causality

Bai, et al. (2010, 2011, 2018) and Chow, et al. (2018)

extend the nonlinear causality test developed by Hiemstra

and Jones (1994) and others to the multivariate setting. To

identify any nonlinear Granger causality relationship from

any two series, say {𝑥𝑡} and {𝑦𝑡} in the bivariate setting,

one has to first apply the linear model to {𝑥𝑡} and {𝑦𝑡} to

identify their linear causal relationships and obtain the

corresponding residuals, {𝜀1̂𝑡} and {𝜀2̂𝑡}. Thereafter, one

has to apply a nonlinear Granger causality test to the

residual series, {𝜀1̂𝑡} and {𝜀2̂𝑡}, of the two variables being

examined to identify the remaining nonlinear causal

relationships between their residuals. This is also true if

one would like to identify the existence of any nonlinear

Granger causality relation between two vectors of time

series, say 𝑥𝑡 = (𝑥1,𝑡 , … , 𝑥𝑛1,𝑡)′ and 𝑦𝑡 = (𝑦1,𝑡 , … , 𝑦𝑛2,𝑡)′

in the multivariate setting. One has to apply the VAR

19

model or the VECM model to the series to identify their

linear causal relationships and obtain their corresponding

residuals. Thereafter, one has to apply a nonlinear Granger

causality test to the residual series. For simplicity, in this

section we denote 𝑋𝑡 = (𝑋1,𝑡 , … , 𝑋𝑛1,𝑡)′ and 𝑌𝑡 =

(𝑌1,𝑡 , … , 𝑌𝑛2,𝑡)′ to be the corresponding residuals of any

two vectors of variables being examined. We first define

the lead vector and lag vector of a time series, say 𝑋𝑖,𝑡 , as

follows:

20

for

𝑋𝑖,𝑡 , i = 1,2 , the 𝑚𝑥𝑖
-length lead vector and the 𝐿𝑥𝑖

-

length lag vector of 𝑋𝑖,𝑡 are:

𝑋
𝑖,𝑡

𝑚𝑥𝑖 ≡ (𝑋𝑖,𝑡 , 𝑋𝑖,𝑡+1, … , 𝑋𝑖,𝑡+𝑚𝑥𝑖
−1) , 𝑚𝑥𝑖

= 1,2, … , 𝑡

= 1, 2, …,

𝑋
𝑖,𝑡−𝐿𝑥𝑖

𝐿𝑥𝑖 ≡ (𝑋𝑖,𝑡−𝐿𝑥𝑖
, 𝑋𝑖,𝑡−𝐿𝑥𝑖

+1, … , 𝑋𝑖,𝑡−1) , 𝐿𝑥𝑖
= 1, 2, … , t

= 𝐿𝑥𝑖
+ 1, 𝐿𝑥𝑖

+ 2, …,

respectively. We denote 𝑀𝑥 = (𝑚𝑥1, … , 𝑚𝑥𝑛1
), 𝐿𝑥 =

(𝐿𝑥1, … , 𝐿𝑥𝑛1
) , 𝑚𝑥 = max(𝑚𝑥1, … , 𝑚𝑛1

), and 𝑙𝑥 =

max (𝐿𝑥1, … , 𝐿𝑥𝑛1
). The 𝑚𝑦𝑖

-length lead vector, 𝑌
𝑖,𝑡

𝑚𝑦𝑖 ,

the 𝐿𝑦𝑖
-length lag vector, 𝑌

𝑖,𝑡−𝐿𝑦𝑖

𝐿𝑦𝑖 , of 𝑌𝑖,𝑡 , and 𝑀𝑦 , 𝐿𝑦 , 𝑚𝑦 ,

and 𝑙𝑦 can be defined similarly.

21

Given 𝑚𝑥 , 𝑚𝑦 , 𝐿𝑥 , 𝐿𝑦 , and ℯ > 0, we define the following

four events:

{‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒}

≡ {‖𝑋
𝑖,𝑡

𝑀𝑥𝑖 − 𝑋
𝑖,𝑠

𝑚𝑥𝑖 ‖ < 𝑒, for any 𝑖 = 1, … , 𝑛1} ;

{‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒}

≡ {‖𝑋
𝑖,𝑡−𝐿𝑥𝑖

𝐿𝑥𝑖 − 𝑋
𝑖,𝑠−𝐿𝑥𝑖

𝐿𝑥𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛1} ;

{‖𝑌𝑡

𝑀𝑦
− 𝑌𝑠

𝑀𝑦‖ < 𝑒}

≡ {‖𝑌
𝑖,𝑡

𝑚𝑦𝑖 − 𝑌
𝑖,𝑠

𝑚𝑦𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛2} ; 𝑎𝑛𝑑

{‖𝑌𝑡−𝐿𝑦

𝐿𝑦
− 𝑌𝑠−𝐿𝑦

𝐿𝑦 ‖ < 𝑒}

≡ {‖𝑌
𝑖,𝑡−𝐿𝑦𝑖

𝐿𝑦𝑖 − 𝑌
𝑖,𝑠−𝐿𝑦𝑖

𝐿𝑦𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛2} ;

22

where ‖∙‖ denotes the maximum norm which is defined as

‖𝑋 − 𝑌‖ = max(|𝑥1 − 𝑦1| , |𝑥2 − 𝑦2|, … , |𝑥𝑛 − 𝑦𝑛|) for

any two vectors X = (𝑥1, … , 𝑥𝑛) and Y = (𝑦1, … , 𝑦𝑛). The

vector series {𝑌𝑡} is said not to strictly Granger cause

another vector series {𝑋𝑡} if

𝑃𝑟 (‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒|‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒, ‖𝑌𝑡−𝐿𝑦

𝐿𝑦
− 𝑌𝑠−𝐿𝑦

𝐿𝑦 ‖ < 𝑒,)

= 𝑃𝑟 (‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒|‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒)

 (6)

where Pr (∙ | ∙) denotes conditional probability. Applying

(6), one has to use the following test statistic to test for the

nonlinear Granger causality:

√𝑛 (
𝐶1(𝑀𝑥+𝐿𝑥,𝐿𝑦,𝑒,𝑛)

𝐶2(𝐿𝑥,𝐿𝑦,𝑒,𝑛)
−

𝐶3(𝑀𝑥+𝐿𝑥,𝑒,𝑛)

𝐶4(𝐿𝑥,𝑒,𝑛)
)

 (7)

23

Readers may refer to Bai, et al. (2010, 2011, 2018) and

Chow, et al. (2018) for the details of the equation (7).

Under this setting, Bai, et al. (2010, 2011) prove that to

test the null hypothesis, 𝐻0 , that {𝑌1,𝑡 , … , 𝑌𝑛2,𝑡} does not

strictly Granger cause {𝑋1,𝑡 , … , 𝑋𝑛1,𝑡} , under the

assumptions that the time series {𝑋1,𝑡 , … , 𝑋𝑛1,𝑡} and

{𝑌1,𝑡 , … , 𝑌𝑛2,𝑡} are strictly stationary, weakly dependent,

and satisfy the mixing conditions stated in Denker and

Keller (1983), if the null hypothesis, 𝐻0, is true, the test

statistic defined in (7) is distributed as

𝑁 (0, 𝜎2(𝑀𝑥 , 𝐿𝑥 , 𝐿𝑦 , 𝑒)). When the test statistic in (7) is

too far away from zero, we reject the null hypothesis.

Readers may refer to Bai, et al. (2010, 2011, 2018) and

Chow, et al. (2018) for the details of the consistent

estimator of the covariance matrix.

The nonlinear causality test has the ability to detect a

nonlinear deterministic process which originally "looks"

24

random. The nonlinear causality test is a complementary

test for the linear causality test as linear causality tests

could not detect nonlinear causal relationship while the

nonparametric approach adopted in this paper can capture

the nonlinear nature of the relationship among variables.

25

From literature we note an interest in analyzing the

cross-correlation relationship. For example, Podobnik and

Stanley (2008) propose a detrended cross-correlation

analysis (DXA) to investigate power-law cross-

correlations between different simultaneously-recorded

time series in the presence of non-stationarity. Podobnik,

et al. (2009) introduce a joint stochastic process to model

cross-correlations. In addition, using stock market returns

from two stock exchanges in China, Ruan, et al. (2018)

employ the MF-DCCA to investigate the non-linear cross-

correlation between individual investor sentiment and

Chinese stock market return. Zhang, et al. (2018) study the

cross-correlations between Chinese stock markets and the

other three stock markets. Xiong, et al. (2018) use a new

policy uncertainty index to investigate the time-varying

correlation between economic policy uncertainty and

Chinese stock market returns. On the other hand, Wan and

Wong (2001) develop a model to study the contagion

effect. Cerqueti, et al. (2018) develop a model based on

26

Mixed Poisson Processes to deal with the theme of

contagion in financial markets. Wang, et al. (2018)

propose a non-Markovian social contagion model in

multiplex networks with inter-layer degree correlations to

delineate the behavior of spreading, and develop an edge-

based compartmental theory to describe the model. The

nonlinear causality used in this paper could also be used to

measure nonlinear cross-correlation to handle the

nonlinear contagion effect. One could easily use or modify

Equation (6) to deal with the nonlinear cross-correlation

and the nonlinear contagion effect.

27

Linear Granger Causality Analysis using R

Step 1: Install R

First, download the latest version or R. R for

Windows can be downloaded at https://cran.r-

project.org/bin/windows/base/

R is an incredibly powerful open source program for

statistics and graphics. It can run on pretty much

any computer and has a very active and friendly

support community online. Graphics created by R

are extremely extensible and are used in high level

publications like the New York Times (as explained

by this former NYT infographic designer).

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
http://www.r-project.org/
http://book.flowingdata.com/

28

The latest version of R is 3.6.0. Click the link

“Download R 3.6.0 for Windows” to download and

install.

Figure 1. The R Console Screen

1. Download R from http://cran.us.r-project.org/ (click on “Download R for

Windows” > “base” > “Download R 3.6.0 for Windows”)

2. Install R. Leave all default settings in the installation options.

http://cran.us.r-project.org/
http://cran.cnr.berkeley.edu/bin/windows/base/R-3.6.0-win.exe

29

We note while R installation is required, since

RStudio is used in this illustration, opening R Console

is not necessary.

30

Step 2: Install RStudio

RStudio is the most popular open-source IDE

(Integrated Development Environment) for R.

It’s basically a nice front-end for R, giving you a

console, a scripting window, a graphics window, and

an R workspace, among other options.

It provides more features from the user interface as

well as being more user-friendly than the raw

development environment comes with the base

installation of R.

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-

commander-windows-osx/

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/
https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/

31

RStudio can be downloaded at

https://www.rstudio.com/products/rstudio/download/

#download.

Click the Download button below the “RStudio

Desktop”. Choose the right version of installer for

your operating system.

Figure 2. RStudio Screen

https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

32

1. Download RStudio

from http://rstudio.org/download/desktop and

install it. Leave all default settings in the

installation options.

RStudio
Desktop

Open Source
License

RStudio 1.2.1335 - Windows 7+ (64-bit)

http://rstudio.org/download/desktop
https://download1.rstudio.org/desktop/windows/RStudio-1.2.1335.exe

33

Step 3: Open the R File in RStudio

To open the R script used in this illustration, click the

File button in the top-left corner and then click Open

File.

Then browse to the folder where the R program is

stored, select the file and click Open.

Figure 3. Open R File in RStudio

34

Step 4: Prepare the Data

The R Program consumes a data file which should

have at least 2 variables in CSV format (with header).

Save the data file to the same folder as the R file. In

this illustration, the data for Indian as mentioned in

the data section named ly (logarithms of real GDP

per capita) and lm (logarithms of the ratio of bank

deposit liabilities to nominal GDP) are used are

included in the data file.

Figure 4. Sample Data File for the R Script

35

Step 5: Run the R Script

There are different ways in RStudio you can run R

code. The first choice is to “source” the file, i.e. to

evaluate all the R code in the opened file. Please

click the Source button in the top-right side in the

code editor. Alternatively, in Windows, you may press

Ctrl + Shift + S to source a file.

36

Figure 5. Source R File in RStudio

R, being a scripting language, can be run line by line

or evaluate only selected area in your code. When

only part of the code is to be evaluate, select the

required part of the code, and then click R.

Alternatively, in Windows, you may press Ctrl + Enter

to run selected code.

Figure 6. Evaluate Selected R Code

37

Execution result will be shown in the Console Pane.

You are now ready to analyze the data interactively

using R.

Figure 7. The Console Pane in RStudio

38

Step 6: Data Analysis

Install Required Libraries

Before the analysis, it is required to first install the required

libraries in R.

R Code

A helper function to load and install packages

load_package <- function (package) {

 if (!require(package, character.only=TRUE)) {

 install.packages(package, quiet = TRUE);

 require(package, character.only=TRUE)

 }

}

 A helper function is defined here to simplify the package

installation process.

 The function accepts an argument of the package name

and tries to load the package.

 If the package isn’t installed yet, it installs and loads the

package into the environment.

39

R Code

Install and load the required R packages

load_package("tseries") # For Unit Root Test

load_package("urca") # For Cointegration Test

load_package("vars") # For VAR

load_package("fBasics") # For Descriptive Statistics

load_package("rstudioapi") # To Detect Script Directory

After that 5 packages are installed using the function.

These packages are

 tseries (for the unit root test),

 urca (for cointegration test),

 vars (for VAR estimation),

 fBasics (for descriptive statistics),

 rstudioapi (for a function detecting the script path).

40

Load Data

 R Code

script_folder <-

dirname(rstudioapi::getActiveDocumentContext()$path)

india_data <- read.csv(paste0(script_folder, "/india.csv"))

india_data <- india_data[, c("ly", "lm")]

This part of the code loads the data in CSV format named

india.csv into the environment.

41

Descriptive Statistics

R Code

Descriptive Statistics

desc_stat <- basicStats(india_data)

print(desc_stat)

ly <- india_data[, "ly"]

lm <- india_data[, "lm"]

Figure 8. Descriptive Statistics Output

42

Unit Root Test

R Code

ly <- india_data[, "ly"]

lm <- india_data[, "lm"]

Unit Root Test - ADF Test

adf_ly <- adf.test(ly)

adf_lm <- adf.test(lm)

adf_dly <- adf.test(diff(ly))

adf_dlm <- adf.test(diff(lm))

print(list(adf_ly=adf_ly, adf_lm=adf_lm, adf_dly=adf_dly,

adf_dlm=adf_dlm))

This part of the code first explicitly defines 2 variables from the

dataset for better readability. ADF unit root test are then run to

test for unit root in these variables.

43

Figure 9. ADF Unit Root Test Output

For each variable in the testing, the ADF unit root test using the

default configuration cannot reject the null hypothesis that the

series contains a unit root. The unit root tests on the first

difference of these variables show that both the first-differenced

time series are stationary.

The results show that both the variables ly and lm are I(1) at 5%

level of significance.

44

For more information about the adf.test function, please see the

document available at https://cran.r-

project.org/web/packages/tseries/tseries.pdf.

https://cran.r-project.org/web/packages/tseries/tseries.pdf
https://cran.r-project.org/web/packages/tseries/tseries.pdf

45

Cointegration Test

 R Code

Cointegration Test - Johansen

lag <- 5 # lag-length for the VAR system

jotest=ca.jo(data.frame(ly, lm), type="trace", K=lag,

ecdet="none", spec="longrun")

jotest_summary <- summary(jotest)

print(jotest_summary)

The Johansen cointegration test results shows that these time

series are not cointegrated at 5% level of significance. For more

information about the ca.jo function,

please see the document available at

https://www.rdocumentation.org/packages/urca/versions/1.2-

9/topics/ca.jo.

Figure 10. Johansen Cointegration Test Output

https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo
https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo

46

VAR Estimation

R Code

VAR Estimation

var_data = data.frame(dly=diff(ly), dlm=diff(lm)) # First

difference the data: I(1) and no cointegration at 5%

significance level

obs <- nrow(var_data)

var_ldy_ldm <-VAR(var_data, p=lag, type="const") #

Sample VAR Model Estimation

print(var_ldy_ldm)

Before we can conduct the Granger causality test, an VAR

system is estimated.

For more information about the VAR function, please see the

document available at https://cran.r-

project.org/web/packages/vars/vars.pdf

https://cran.r-project.org/web/packages/vars/vars.pdf
https://cran.r-project.org/web/packages/vars/vars.pdf

47

Figure 11. VAR Estimation Result

48

Granger Causality Test

 R Code

granger.mpl <- function(data, restriction, causality, lag,

Nobs, df, Nos)

{

 var.u<-VAR(data,p=lag,type="const")

 unrestricted<-det(cov(as.matrix(resid(var.u))))

 var.r<-restrict(var.u,method="man",resmat=restriction)

 restricted<-det(cov(as.matrix(resid(var.r))))

 value.test<-(Nobs-lag-(1+lag*Nos))*(log(restricted)-

log(unrestricted))

 p<-pchisq(value.test, df, lower.tail=FALSE)

 return(matrix(c(df,value.test,p),nrow=1,

 byrow=TRUE,dimnames=list(c(causality),c("df",

"chi^2", "p"))))

}

49

Linear Granger-causality Test

For M causes Y

res1 <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1), nrow=2,

byrow=TRUE)

granger.mpl(var_data, res1, "Y <- M", lag, obs, lag, 2)

For Y causes M

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5), 1),

nrow=2, byrow=TRUE)

granger.mpl(var_data, res2, "M <- Y", lag, obs, lag, 2)

The Granger causality test results show that, the variable lm (M)

Granger cause ly (Y) and ly (Y) does not Granger cause lm (M),

at 5% level of significance.

Figure 12. Granger Causality Test Result

50

Export the Residuals of the VAR System for Further

Analysis

 R Code

var_resid <- resid(var_ldy_ldm) # Get the residuals from

the VAR system

Export residuals for further processing

write.table(var_resid[, 'dly'], file = paste0(script_folder,

"/var_dly_resid.csv"), col.names = FALSE, row.names =

FALSE)

write.table(var_resid[, 'dlm'], file = paste0(script_folder,

"/var_dlm_resid.csv"), col.names = FALSE, row.names =

FALSE)

Finally, the residuals are exported into 2 files separately to be

used in the next part of the analysis.

51

Non-linear Granger Causality Test

The sample program is written in C. The C/C++

languages are generally implemented as a compiled

language, i.e. the source code of the program is

compiled into machine code before executing. A

C/C++ compiler is therefore required in order to

execute the program. In this illustration, CodeBlocks,

a user-friendly free and open-source IDE (Integrated

Development Environment) is used to run the

program to simplify the code execution process. The

selected CodeBlocks installer comes with the GNU

Compiler Collection (GCC)1, one of the most popular

C/C++ compilers, as included in the bundled MinGW2

development environment for Windows.

1 https://gcc.gnu.org/
2 http://www.mingw.org/

https://gcc.gnu.org/
http://www.mingw.org/

52

Step 1: Download and Install CodeBlocks

Go to the official website of CodeBlocks:

http://www.codeblocks.org

Click the Binaries page link under Downloads in the

main menu on the left hand side. Alternatively, direct

go to this URL

http://www.codeblocks.org/downloads/binaries and

select the CodeBlocks version for your operating

system.

In this illustration, the version codeblocks-

17.12mingw-setup.exe is used. This setup file

includes the G++ compiler, which is one of the most

popular C++ compilers.

The selected version of CodeBlocks can be

downloaded directly form this URL at

http://www.codeblocks.org/
http://www.codeblocks.org/downloads/binaries

53

http://sourceforge.net/projects/codeblocks/files/Binar

ies/17.12/Windows/codeblocks-17.12mingw-

setup.exe

After downloading the setup file, open it to install

CodeBlocks.

http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe

54

Step 2: Prepare the Source Code and Data Files

Save the source code file to the same folder as the

output files from the R code. There are three files

involved, namely, the file of residuals generated from

previous steps, i.e. var_dlm_resi.csv, and

var_dly_resid.csv, the source code file of the C/C++

program, z.cpp.

 z.cpp

This is the source code of the program.

 var_dlm_resid.csv

 This is the data file to be loaded by the program

as the data for variable x

55

 var_dly_resid.csv

This is the data file to be loaded by the program

as the data for variable y

Configurations in the Source Code File (optional)

There are some configurable parameters in the

source code.

Excerpts from Source Code:

 #define Nobs 58

 #define infile1 "var_dlm_resid.csv "

 #define infile2 "var_dly_resid.csv"

 #define outfile "output.txt"

 double epsilon=1.5;

 int m=5;

56

- Nobs: the number of observations in the input

files.

- infile1: the name of the input file for the time

series variable x. When running the program, the

program expects there is a file named exactly as

specified here to be used as the values of the

time series variable x.

- infile2: similar to infile1 - the name of the input

file for the time series variable y.

- outfile: the name of the output file. After

successful program execution, an output file with

the execution result will be generated. This

parameter specifies the output file name.

57

- epsilon: the epsilon parameter used in the

estimation.

- m: the number of lags

Replace these parameters with the desired values

should there be any required changes in the names

of the files, the number of observations or the epsilon

parameter.

Data Format of the Data Files (var_dly_resid.csv and

var_dlm_resid.csv):

Figure 8. Sample Data Format for the Input Files

58

In the input file is a single column of the time series.

Each value in a row will be loaded as a data point for

the corresponding time series.

59

Figure 10. Source Code and Data Files

Step 3: Open the z.cpp source code file with

CodeBlocks

The required files and software are ready. Open

CodeBlocks

60

Figure 11. Welcome Screen of CodeBlocks

61

In the upper-left corner, click File then click Open

Figure 12. Open File in CodeBlocks

Browse to the folder where the 3 downloaded files

are saved. Then, select the z.cpp file and click Open.

62

Figure 13. Choose the Source Code File

63

The source code of the program is displayed inside

the CodeBlocks editor. In case of any required

change, for example, change of the sample size or

names of the input files, please modify the parameter

values accordingly and save.

Figure 14. Code Editor in CodeBlocks

64

Step 4: Build the Code

A build process is required in order to execute the

C++ program. After the build process, an executable

file, in our case z.exe will be created.

Click the Build button

Figure 15. Build Button in CodeBlocks

65

After the build completed, there are 2 new files in the

folder, namely z.exe and z.o.

The z.o file is an intermediate file produced during the

build process. It is not directly executable but is used

by the CodeBlocks IDE to produce the final

executable program, i.e. the z.exe file.

Figure 16. Generated Files after the Build Process

Step 5: Run the Executable

The executable program z.exe has been created

from source code and is ready to be run. It can be run

66

by just double clicking the z.exe in the folder.

Alternatively, using the CodeBlocks IDE, users can

run the program by clicking the Run button in the user

interface, as shown below.

Figure 17. The Run Button in CodeBlocks

After the program execution, the execution time is

reported. The return value 0 signals the success of

the program execution.

67

Press any key to close the prompt.

Figure 18. Screen after Successful Run

Step 6: Review the Output

Finally, to view the execution result, go to the

program folder. A plain text output file output.txt has

been generated after the execution. (as described in

the configuration section in Step 2, the output file

68

name can be configured as needed. The default file

name is output.txt)

Figure 19. Output File Generated from the Program

69

Open the output.txt to view the result. The output file

reports the Sample Size, the Epsilon parameter value,

the HJ Statistic and the P-value in a CSV (comma-

separated values) with header format.

Figure 20. Result from the Program

70

Appendix

Source Code of the R Program

A helper function to load and install packages

load_package <- function (package) {

 if (!require(package, character.only=TRUE)) {

 install.packages(package, quiet = TRUE);

 require(package, character.only=TRUE)

 }

}

Install and load required R packages

load_package("tseries") # For Unit Root Test

load_package("urca") # For Cointegration Test

load_package("vars") # For VAR

71

load_package("fBasics") # For Descriptive

Statistics

load_package("rstudioapi") # To Detect Script

Directory

script_folder <-

dirname(rstudioapi::getActiveDocumentContext(

)$path)

india_data <- read.csv(paste0(script_folder,

"/india.csv")) # Data file in the same folder as the

R program

india_data <- india_data[, c("ly", "lm")]

Descriptive Statistics

desc_stat <- basicStats(india_data)

print(desc_stat)

72

ly <- india_data[, "ly"]

lm <- india_data[, "lm"]

Unit Root Test - ADF Test

adf_ly <- adf.test(ly)

adf_lm <- adf.test(lm)

adf_dly <- adf.test(diff(ly))

adf_dlm <- adf.test(diff(lm))

print(list(adf_ly=adf_ly, adf_lm=adf_lm,

adf_dly=adf_dly, adf_dlm=adf_dlm))

Cointegration Test - Johansen

lag <- 5 # lag-length for the VAR system

73

jotest=ca.jo(data.frame(ly, lm), type="trace",

K=lag, ecdet="none", spec="longrun")

jotest_summary <- summary(jotest)

print(jotest_summary)

VAR Estimation

var_data = data.frame(dly=diff(ly), dlm=diff(lm)) #

First difference the data: I(1) and no cointegration

at 5% significance level

obs <- nrow(var_data)

var_ldy_ldm <-VAR(var_data, p=lag,

type="const") # Sample VAR Model Estimation

print(var_ldy_ldm)

granger.mpl <- function(data, restriction,

causality, lag, Nobs, df, Nos)

74

{

 var.u<-VAR(data,p=lag,type="const")

 unrestricted<-det(cov(as.matrix(resid(var.u))))

 var.r<-

restrict(var.u,method="man",resmat=restriction)

 restricted<-det(cov(as.matrix(resid(var.r))))

 value.test<-(Nobs-lag-

(1+lag*Nos))*(log(restricted)-log(unrestricted))

 p<-pchisq(value.test, df, lower.tail=FALSE)

 return(matrix(c(df,value.test,p),nrow=1,

byrow=TRUE,dimnames=list(c(causality),c("df",

"chi^2", "p"))))

}

Linear Granger-causality Test

75

For M causes Y

res1 <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1),

nrow=2, byrow=TRUE)

granger.mpl(var_data, res1, "Y <- M", lag, obs,

lag, 2)

For Y causes M

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5),

1), nrow=2, byrow=TRUE)

granger.mpl(var_data, res2, "M <- Y", lag, obs,

lag, 2)

var_resid <- resid(var_ldy_ldm) # Get the

residuals from the VAR system

Export residuals for further processing

76

write.table(var_resid[, 'dly'], file =

paste0(script_folder, "/var_dly_resid.csv"),

col.names = FALSE, row.names = FALSE)

write.table(var_resid[, 'dlm'], file =

paste0(script_folder, "/var_dlm_resid.csv"),

col.names = FALSE, row.names = FALSE)

77

Source Code of the C/C++ Program - z.cpp

#include <stdio.h> // For file input / output

#include <stdlib.h>

#include <math.h> // Use Math Library for

functions fabs, exp, etc...

#define max(a,b) a>b?a:b

#define Nobs 58 // Number of Observation

#define infile1 "var_dly_resid.csv" // Input File

Name - First Variable

#define infile2 "var_dlm_resid.csv" // Input File

Name - Second Variable

#define outfile "output.txt" // Output File Name

double epsilon=1.5; // Epsilon Parameter

int m=5; // Lag Length

int n;

double Q, **A, C[4];

78

void redun(double *x, double *y, int N, int m, int

mmax, double epsilon)

{

 int i, j, s;

 double disx, disy, disz, Cy, Cxy, Cyz, Cxyz;

 Q=Cy=Cxy=Cyz=Cxyz=0.0;

 n = N - mmax;

 for (i=mmax;i!=N;i++)

 {

 for (j=mmax;j!=N;j++)

 if (j!=i)

 {

 disx = disy = 0.0;

 for (s=1;s!=m+1;s++)

 disx = max(fabs(x[i-s]-x[j-s]),disx);

79

 for (s=1;s!=mmax+1;s++)

 disy = max(fabs(y[i-s]-y[j-s]),disy);

 if (disy <= epsilon)

 {

 Cy++;

 A[3][i]++;

 if (disx <= epsilon)

 {

 Cxy++;

 A[1][i]++;

 }

 disz = max(fabs(y[i]-y[j]),disy);

 if (disz <= epsilon)

 {

 Cyz++;

80

 A[2][i]++;

 if (disx <= epsilon)

 {

 Cxyz++;

 A[0][i]++;

 }

 }

 } // end condition |Yi - Yj| < epsilon

 } // end loop over j

 } // end loop over i

 Q = (double) Cxyz/Cxy - (double) Cyz/Cy;

 C[0] = Cxyz/(double)(n*(n-1));

 C[1] = Cxy/(double)(n*(n-1));

 C[2] = Cyz/(double)(n*(n-1));

 C[3] = Cy/(double)(n*(n-1));

81

 for (i=0;i!=4;i++)

 for (j=mmax;j!=N;j++)

 {

 A[i][j] /= (double)(n-1);

 A[i][j] -= C[i]; // C to A

 }

}

/* normalise the time series to unit std. dev. */

void normalise(double *x, int N)

{

 int i;

 double mean=0.0, var=0.0;

 for (i=0;i!=N;i++)

 {

 mean += x[i];

 var += x[i]*x[i];

82

 }

 mean /= (double)(N);

 var /= (double)(N);

 var -= mean*mean;

 for (i=0;i!=N;i++)

 x[i] = (x[i]-mean)/sqrt(var);

 return;

}

// erf function (Error Function)

extern double erf(double x) {

 double t, z, retval;

 z = fabs(x);

83

 t = 1.0 / (1.0 + 0.5 * z);

 retval = t * exp(-z * z - 1.26551223 + t *

 (1.00002368 + t *

 (0.37409196 + t *

 (0.09678418 + t *

 (-0.18628806 + t *

 (0.27886807 + t *

 (-1.13520398 + t *

 (1.48851587 + t *

 (-0.82215223 + t *

 0.1708727)))))))));

 if(x < 0.0)

 return retval - 1.0;

 return 1.0 - retval;

}

int main()

{

84

 double x[Nobs], y[Nobs], *ohm, S2, \

 HJ_TVAL, HJ_Pval, d[4], sigma[4][4]; //hv;

 int i, j, l, k, K, mmax; //ieps, nn;

 FILE *fil;

 A = (double **) malloc(4*sizeof(double *));

 for (i=0;i!=4;i++)

 A[i] = (double *) malloc(Nobs*sizeof(double));

 K = (int)(sqrt(sqrt(Nobs-m)));

 ohm = (double *) malloc(K*sizeof(double));

 ohm[0] = 1.0;

 for (k=1;k<K;k++)

 ohm[k] = 2.0*(1.0-k/(double)(K));

 //get external data

85

 fil=fopen(infile1,"r");

 for (i=0;i<Nobs;i++)

 fscanf(fil,"%lf",&x[i]);

 fclose(fil);

 fil=fopen(infile2,"r");

 for (i=0;i<Nobs;i++)

 fscanf(fil,"%lf",&y[i]);

 fclose(fil);

 for (j=0;j!=4;j++)

 {

 C[j] = 0.0;

 for (i=0;i!=Nobs;i++)

 A[j][i] = 0.0;

 }

86

 normalise(x, Nobs);

 normalise(y, Nobs);

 mmax=m;

 redun(x,y,Nobs,m,mmax,epsilon); // call the

redun function defined above

 for (i=0;i!=4;i++)

 for (j=0;j!=4;j++)

 {

 sigma[i][j] = 0.0;

 for (k=0;k!=K;k++)

 for (l=mmax+k;l!=Nobs;l++)

 sigma[i][j] += 4.0*ohm[k]*(A[i][l]*A[j][l-

k]+A[i][l-k]*A[j][l])/(double)(2*(n-k));

 }

87

 d[0] = 1.0/C[1];

 d[1] = -C[0]/(C[1]*C[1]);

 d[2] = -1.0/C[3];

 d[3] = C[2]/(C[3]*C[3]);

 S2=0.0;

 for (i=0;i!=4;i++)

 for (j=0;j!=4;j++)

 S2 += d[i]*sigma[i][j]*d[j];

 HJ_TVAL = Q*sqrt(n)/sqrt(S2);

 // CDF

 if (HJ_TVAL>0)

 HJ_Pval = 0.5 - .5*erf(HJ_TVAL/sqrt(2.0));

 else

 HJ_Pval = 0.5 + .5*erf(HJ_TVAL/sqrt(2.0));

 fil=fopen(outfile,"w");

88

 fprintf(fil, "SampleN, Epsilon, HJstat, P-value\n");

 fprintf(fil, "%i,%f,%f,%f\n", Nobs, epsilon,

HJ_TVAL, HJ_Pval);

 fclose(fil);

 return(0);

}

89

C / C++ Quick Reference

#include

The #include directive is a preprocessor

command (which tells the compiler to do

something before the actual compilation process)

to include the file as specified to the current point).

For example, it is the line “#include <math.h>” at

near the top of the source code that make

necessary math functions such as exp

(exponential) and sqrt (square root) available in

the program.

#define

 A preprocessor command to define a macro.

It can be used to define constants to be

90

substituted by the specified value in the source

code.

For example the line “#define Nobs 58” in

the source code instructs the preprocessor to

substitube “Nobs” with 58 in the program. A

macro can also be parameterized as in the line

“#define max(a,b) a>b?a:b”

Comment

Use “//” for Single line comment. Any string in the

same line after “//” is regarded as comments and

will be ignored by the compiler.

Use “/* …. */” for multiple line comments. Any

string between “/*” and “*/ is regarded as

comments and will be ignored by the compiler.

91

Entry Point of a Program

The function main() is the entry point of the

program.

If-statement

If (condition) statement

// the statement will be executed if the

condition is true

If (condition) {

92

 // statements to be executed if the condition is

true

}

If (condition) {

 // statements to be executed if the condition is

true

} else {

 // statements to be executed if the condition is

not true

93

}

If (condition_1) {

 // statements to be executed if the condition is

not true

} else if (condition_2) {

 // statements to be executed if the condition_1

is not true

 // and the condition_2 is true

} else {

94

 // statements to be executed if all the

conditions above

// i.e. condition_1 and condition_2 are false

}

For-loop

for (initialization_step; condition; increment) {

 // statements to be executed if the condition is

true

}

95

In a for loop, the initialization step is first run to

initialize the counter. If the condition is true, the

statements inside the for loop are executed, and

then the increment step is run to update the

counter.

For example,

#include <stdio.h>

int main()

{

 for (int i = 0; i < 5; i++) {

 printf("%d\n", i);

 }

 return 0;

}

96

Output:

0

1

2

3

4

The initialization step declare the counter i and

set it as 0 (the initialization step int i = 0). The loop

run as long as the counter i is less than 5 (the

condition i < 5). After each loop the counter is

increased by 1 (the increment step i++). The loop

terminates as the i is increased to 5 and no longer

prints the digit. In the above example, the “\n” in

the first argument to the printf function is a new

line character, and therefore in each loop the

97

counter i is outputted to a new line. The result in

this example is the same if the condition is i != 5.

Assignment Operations

Expres

sion

Explanation

a = b assign the value of b to the variable a, not

to be confused with the expression of the

equality between two variables.

a = b =

0

assign the value 0 to variables a and b

a += b equivalent to a = a + b

a -= b equivalent to a = a - b

a *= b equivalent to a = a * b

a /= b equivalent to a = a / b

98

a++ return the value of a and then increase the

value of a by 1

Comparison Operators

A logical comparison returns a boolean value true

or false depending on the truth value of the

expression.

Expres

sion

Explanation

a == b a is equal to b

a != b a is no equal to b

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

99

a >= b a is great than and equal to b

100

Useful Math Functions as Defined in math.h

Functio

n

Explanation

exp return the number of the constant e raised

to the power to a floating-point number

sqrt return the square root of a floating-point

number

fabs return the absolute value of the given

floating-point number argument

