Introduction

e This document provides an introduction to the
hand-on of linear and non-linear causality
analysis. Guidance of necessary software
environment setup and installation will be
provided.

e The sample code cover time series analysis
technigues including unit root test, cointegration
test, VAR estimation, linear Granger causality
test and non-linear Granger causality test.

e We illustrate the techniques by going through a
simplified bivariate analysis with real economic

data.

Data

In this illustration, our data include information from
India, from 1950 to 2014 obtained from the
International Financial Statistics, the database of

International Monetary Fund.

India is selected as one the countries in the study
because it meets our criteria that the country should
have a population exceeding one million in 2017 and

the database has enough data in all the variables.

It is difficult to directly measure both financial

development and economic growth.

Economic growth is commonly measured using real
GDP per capita, see for example Gelb (1989),
Roubini and Sala-i-Martin (1992), King and Levine
(1993), and Demetriades and Hussein (1996).

Similar to these studies, a logarithm of real GDP per
capita is used to proxy economic growth and has

been denoted as Y.

For the variable to measure financial development, it
IS a common practice (Gelb, 1989 and King and
Levine, 1993) to use a ratio of some broad measures

of the money stock to the level of nominal GDP.

However, Demetriades and Hussein (1996) argue
that this type of ratio may reflect more extensive use
of currency rather than an increase in the volume of

bank deposits.

To circumvent the limitation, they recommend
excluding currency in circulation from the broad

money stock.

In this illustration we follow their recommendation
and use the logarithm of the ratio of bank deposit
liabilities to nominal GDP as the first proxy for

financial development and represented as M.

We exhibit the summary statistics of where M and Y
are the logarithms of the ratio of bank deposit
liabilities to nominal GDP (M), and real GDP per

capita (Y), respectively, for India.

Methodology

In the literature on the subject of the relationship between
financial development and economic growth, academics,
such as Horng, et al. (2012) are interested in testing the

following two hypotheses:

H{ : financial development does not cause economic
growth, and
HZ: economic growth does not cause financial

development.

Academics and practitioners, such as Horng, et al. (2012)
and Fan, et al. (2018) employ linear causality to study
whether there is any unidirectional or bidirectional
causality between financial development and economic
growth. Thus, they set H': financial development does
not cause economic growth if there is no linear causality

from financial development to economic growth.

6

However, In this illustration, we set

Hg: financial development does not cause economic
growth if there is no linear and no nonlinear causality from

financial development to economic growth.

Similarly, definitions are set for H3" and H3.

Ascertaining whether financial development and
economic growth are cointegrated Is an important piece of
Information. If financial development and economic
growth are cointegrated, we conjecture that both demand-
following and supply-leading theories hold so that
financial development and economic growth move

positively together.

Thus, In this illustration, we examine the following

hypothesis:

H: financial development and economic growth are not

positively cointegrated.

In the following subsections, we will discuss cointegration
and linear and nonlinear causality tests to analyze the
relationship between financial development and economic
growth in developing countries. We first discuss the

cointegration approach in next subsection.

3.2.1 Cointegration

As mentioned in Section 3.1 M, D, and Y have been
designated to be the logarithms of the ratio of bank deposit
liabilities to nominal GDP (M), the ratio of claims on
private sector to nominal GDP, and real GDP per capita,
respectively. If all the variables (M, D, and Y) are
Integrated in degree one, academics and practitioners will
be iInterested in examining whether there iIs any
cointegration relationship among the variables. To analyse
the issue, we employ the Johansen cointegration test

proposed by Johansen (1988), Johansen and Juselius (1990)

9

and Johansen (1991) as some studies, for example,
Gonzalo (1994), confirm that the Johansen cointegration
test performs better than the other cointegration tests,
namely the ADF test (Engle and Granger, 1987). In
addition, when GARCH errors exist in the model, Lee and
Tse (1996) conclude that the bias is not too serious when
using Johansen’s cointegration test if we compare its

performance with other cointegration tests.

Johansen and Juselius (1990) and Johansen (1991)
develop a multivariate maximum likelihood (ML)
procedure for the estimation of the cointegrating vectors.
According to Johansen’s procedure, the p-dimensional
unrestricted Vector Autoregression (VAR) model should

be first specified with k lags:

k
Zt —_ Z Alzt_l + l'IJDt

=1
+ U, (D

10

where Z, = [M,, D;,Y; |" is a 3 x 1vector of stochastic
variables and M, D;, andY; are to be the logarithms of
the ratio of bank deposit liabilities to nominal GDP, the
ratio of claims on private sector to nominal GDP, and real
GDP per capita in period t, respectively. D, is a vector of
dummies and A; is a vector of parameters. This VAR

could be rewritten as:

k-1
AZt —_ z CI)lAZt—l + HZt_i + LIJDt
=1
+ U, . (2)

The hypothesis of cointegration is formulated as a
reduced rank of the IT matrix where I1 = af’ such that a
IS the vector or matrix of the adjustment parameter and 3
IS the vector or matrix of the cointegrating vectors.
According to Engle and Granger (1987), if the rank of II

(r) is not equal to zero, then r cointegrating vectors exist.

11

The number of cointegrating vectors is less than or equal
to the number of variables, which is 3 in our case. The
likelihood ratio (LR) reduced the rank test for the null
hypothesis of at most r cointegrating vectors is given by
the following Trace statistic, and for the null hypothesis of
r against the alternative of r+1 cointegrating vectors Iis

known as the maximal eigenvalue statistic

3/1trace

m
ST (1 =241) Amax
I=r

= —TIn(1 - 2,41) (3)

where m IS the maximum number of possible
cointegrating vectors which is 3 In our case, in this
illustration, r=0,1,2 and A; > A4, > A3 denote
eigenvalues of their corresponding eigenvectors v =
(vq, vy, v3).1f the null hypothesis of r cointegrating vectors
IS accepted, then the rank of the IT matrix equal to r and

there Is exactly r cointegrating vector.

12

3.2.2 Granger Causality

Since our analysis presented in next section (see Table 1)
confirms that all the variables M,,D;, and Y; are I(1),
academics and practitioners are interested in testing
whether there Is any causality relationship among the
differences of the variables M;, D;,and Y;. We let m; =
AM,, d; = AD;, and y, = AY;. This means that academics
and practitioners are interested in testing whether there is
any causality relationship among m;, d;, and y;. Thus, In
this illustration we will test whether there is any linear
Granger causality and thereafter examine whether there is
any nonlinear Granger causality among the variables

mg, dg¢, and y;.

13

3.2.2.1 Linear Granger Causality

To test the linear causality relationship between two

vectors of stationary time series, we set x, =

(X1, - »xnl,t)' and y, = (3’1,t»---:3’n2,t)' say X =
(m,,d.) and y, = (y;)", where there are 3 series in total.
Under this setting, one could construct the following

vector autoregressive regression (VAR) model:

(xt) _ (Ax[2><1]) n

Yt Ay1x1]

(Axx(L)[ZXZ] Axy(L)[2><1]> (xt—l) n (ex,t)
Ayx(L)[lxz] Ayy(L)[lxl] Yt-1 €yt

(4)

where A,[2x1) and Ay ;4] are two vectors of intercept

terms, Axx(L)[ZXZ] ’ Axy(L)[le] , Ayx(L)[2><1] , and

14

A, (L)[1x17 are matrices of lag polynomials, e, . and e,, ,

are the corresponding error terms.

Testing the following null hypotheses: Hy: Ay, (L) = 0
and Hg:Ayx(L) = 0 Is equivalent to testing the linear
causality relationship between x; and y,.There are four
different situations for the causality relationships between
x, and y, in (1): (a) rejecting H but not rejecting HE
Implies a unidirectional causality from y, to x;, (b)
rejecting HZ but not rejecting H} implies a unidirectional
causality from x, to y,, (c) rejecting both H; and Hj
Implies the existence of feedback relations, and (d) not
rejecting both H and H¢ implies that x, and y, are not
rejected to be independent. Readers may refer to Bai, et al.

(2010) for the details of testing Hj and/or HE.

15

If the time series are cointegrated, one should impose the
error-correction mechanism (ECM) on the VAR to
construct a vector error correction model (VECM) in order
to test Granger causality between the variables of interest.
In particular, when testing the causality relationship
between two vectors of non-stationary time series, we let
Ax, = (AM,,AD,)" and Ay, =(AY;)' be the
corresponding stationary differencing series such that
there are 3 series in total. If x; and y, are cointegrated,
then instead of using the VAR in (1), one should adopt the
following VECM model:

(ay0) = (i)

Ay Ayl1xa]
n (Axx(L)[sz] Axy(L)[le]) (Axt_l)
Ayx(L)[lxz] Ayy(L)[lxl] Ayt—l

+ () - eemy g + (o) (5)

16

where ecm;_4 1S lag one of the error correction term, and
ax[2x1] aNd ay[1xq) are the coefficient vectors for the
error correction term ecm;_;. There are now two sources
of causation of y; (x;) by x;(y;), either through the lagged
dynamic terms Ax;_,(Ay,_,), or through the error
correction term ecmg_. Thereafter, one could test the null
hypothesis Hy : Ay, (L) = 0(Hy : A,,(L) =0) and/or
Ho : ay = 0(H, : a, = 0) to identify Granger causality

relation using the LR test.

17

3.2.2.2 Nonlinear Granger Causality

Bai, et al. (2010, 2011, 2018) and Chow, et al. (2018)
extend the nonlinear causality test developed by Hiemstra
and Jones (1994) and others to the multivariate setting. To
Identify any nonlinear Granger causality relationship from
any two series, say {x,} and {y,} in the bivariate setting,
one has to first apply the linear model to {x,} and {y,} to
identify their linear causal relationships and obtain the
corresponding residuals, {£;;} and {&,,}. Thereafter, one
has to apply a nonlinear Granger causality test to the
residual series, {€;,} and {£,,}, of the two variables being
examined to identify the remaining nonlinear causal
relationships between their residuals. This is also true if
one would like to identify the existence of any nonlinear
Granger causality relation between two vectors of time
series, say x; = (Xq,¢, -+, Xn1,e) ANA Y = V16) Ynat)'

In the multivariate setting. One has to apply the VAR

18

model or the VECM model to the series to identify their
linear causal relationships and obtain their corresponding
residuals. Thereafter, one has to apply a nonlinear Granger
causality test to the residual series. For simplicity, in this
section we denote X, = (Xi4 ..., Xn1e) and Yy =
(Yi¢, ., Yno)’ tO be the corresponding residuals of any
two vectors of variables being examined. We first define

the lead vector and lag vector of a time series, say X; ¢, as

follows:

19

for

X;t,i=1,2, the m, -length lead vector and the L, -

length lag vector of X; , are:

mx
[— —_—

=1,2,..,
in — —
Xitty, = (Xi,t_in,Xi,t_inH, o Xipe1) Ly = 1,2, 0t
=Ly +1,Ly +2,...

respectively. We denote M, = (mxl,...,mxnl), L, =
(Lxl, ...,anl),mx = max(mxl, ...,mnl), and [, =
max (Lxl, ...,anl). The m,, -length lead vector, Yinzy Y

the L, -length lag vector, Y of ¥;;, and M,,, L., m

tL’ y’

and [,, can be defined similarly.

20

Given m,, my, Ly, L., and e > 0, we define the following

four events:
{llx:™ — x| < e}

= {‘ it i,s
L

{th L ¢ <e}
{Hxlt Lx _XlS Lx

1, . Tll},

" - Ys’”yl\ < e}

My,

My
X.,)'t—X. 1

nl},

< e, foranyi

m .
Yi .
l,s H < e, foranyi

= } and
Ly Ly
v, Ys-LyH <e
— Yi Yi .
={ Y, Ly, - Y, L < e, foranyi

21

where ||-|| denotes the maximum norm which is defined as
IX — Y|l = max(|x; —y11, [x; — y2l, ooos [=y |) for
any two vectors X = (x4, ..., x,) and Y = (y4, ..., ¥,). The
vector series {Y;} is said not to strictly Granger cause

another vector series {X,} if

Pr([lx;™ — x|l < e[| %7, - x7, || < e ||%2, - ¥2,
= Pr(”XéVIx ” < H|Xt ~Ly Xs “Le|l < e)
(6)

where Pr(- | -) denotes conditional probability. Applying
(6), one has to use the following test statistic to test for the

nonlinear Granger causality:

/i C1(My+Ly,Ly,en) C3(My+Lyen)
C2(Lx,Ly.emn) C4(Ly,en)

(7)

22

Readers may refer to Bai, et al. (2010, 2011, 2018) and
Chow, et al. (2018) for the details of the equation (7).
Under this setting, Bai, et al. (2010, 2011) prove that to

test the null hypothesis, Hy, that {Y; ., ..., ¥, ;} does not
strictly Granger cause {X; ..., Xn1¢} , under the
assumptions that the time series {X;., .., X,1+} and

{Yy ¢, .., Yno o} are strictly stationary, weakly dependent,

and satisfy the mixing conditions stated in Denker and
Keller (1983), if the null hypothesis, H, Is true, the test

statistic defined In (7) Is distributed as
N (O,az(Mx, Lx,Ly,e)). When the test statistic in (7) is

too far away from zero, we reject the null hypothesis.
Readers may refer to Bal, et al. (2010, 2011, 2018) and
Chow, et al. (2018) for the details of the consistent

estimator of the covariance matrix.

The nonlinear causality test has the ability to detect a

nonlinear deterministic process which originally "looks"

23

random. The nonlinear causality test is a complementary
test for the linear causality test as linear causality tests
could not detect nonlinear causal relationship while the
nonparametric approach adopted in this paper can capture

the nonlinear nature of the relationship among variables.

24

From literature we note an interest in analyzing the
cross-correlation relationship. For example, Podobnik and
Stanley (2008) propose a detrended cross-correlation
analysis (DXA) to investigate power-law cross-
correlations between different simultaneously-recorded
time series in the presence of non-stationarity. Podobnik,
et al. (2009) introduce a joint stochastic process to model
cross-correlations. In addition, using stock market returns
from two stock exchanges in China, Ruan, et al. (2018)
employ the MF-DCCA to investigate the non-linear cross-
correlation between individual investor sentiment and
Chinese stock market return. Zhang, et al. (2018) study the
cross-correlations between Chinese stock markets and the
other three stock markets. Xiong, et al. (2018) use a new
policy uncertainty index to investigate the time-varying
correlation between economic policy uncertainty and
Chinese stock market returns. On the other hand, Wan and
Wong (2001) develop a model to study the contagion
effect. Cerqueti, et al. (2018) develop a model based on

25

Mixed Poisson Processes to deal with the theme of
contagion in financial markets. Wang, et al. (2018)
propose a non-Markovian social contagion model iIn
multiplex networks with inter-layer degree correlations to
delineate the behavior of spreading, and develop an edge-
based compartmental theory to describe the model. The
nonlinear causality used in this paper could also be used to
measure nonlinear cross-correlation to handle the
nonlinear contagion effect. One could easily use or modify
Equation (6) to deal with the nonlinear cross-correlation

and the nonlinear contagion effect.

26

Linear Granger Causality Analysis using R

Step 1: Install R

First, download the Ilatest version or R. R for

Windows can be downloaded at https://cran.r-

project.org/bin/windows/base/

R Is an incredibly powerful open source program for
statistics and graphics. It can run on pretty much
any computer and has a very active and friendly
support community online. Graphics created by R
are extremely extensible and are used in high level
publications like the New York Times (as explained

by this former NYT infographic designer).

27

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
http://www.r-project.org/
http://book.flowingdata.com/

The latest version of R is 3.6.0. Click the
“Download R 3.6.0 for Windows” to download

install.

link

and

R R Conscle (B4-bit) — O
File Edit Misc Packages Windows Help

E version 3.6.0 (20159-04-28) —-- "Planting of a Tres"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: xSE_E&—wE&—minngEfxE& (64-bit)

E iz free software and comes with ABSCOLUTELY NO WARRONTY.
You are welcome to redistribute it under certain conditions.
Type '"license ()" or '"licence()' for distribution details.

HNatural language support but running in an English locale

E i=s a collaborative project with many contributors.
Type 'contributors()"' for more information and
"gitation()"'" on how to cite R or R packages in publications.

Type '"demo() ' for szome demos, '"help()'"' for on-line help, or
'help.start ()" for an HIML browser interface to help.
Type "g()" to guit E.

- |

Figure 1. The R Console Screen

1. Download R from http://cran.us.r-project.org/ (click on “Download R for

Windows” > “base” > “Download R 3.6.0 for Windows”)

2. Install R. Leave all default settings in the installation options.

28

http://cran.us.r-project.org/
http://cran.cnr.berkeley.edu/bin/windows/base/R-3.6.0-win.exe

We note while R installation is required, since
RStudio is used in this illustration, opening R Console

IS not necessary.

29

Step 2: Install RStudio

RStudio is the most popular open-source IDE

(Integrated Development Environment) for R.

It's basically a nice front-end for R, giving you a
console, a scripting window, a graphics window, and

an R workspace, among other options.

It provides more features from the user interface as
well as being more user-friendly than the raw
development environment comes with the base

installation of R.

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-

commander-windows-osx/

30

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/
https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/

RStudio can be downloaded at

https://www.rstudio.com/products/rstudio/download/

#download.

Click the Download button below the “RStudio

Desktop”. Choose the right version of

your operating system.

installer for

Rtudio - o X
File Edit Code View Plots Session Build Debug Profile Tools Help
O .oyl Gotofie S B Project (None) =
0 untiteat —[7] Console Teminal - Jobs =0
Sourceonsave | Q J - run | o | source ~
1
R version 3.6.0 (2019-04-26) —- "planting of a Tree"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R i5 free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()’ for distribution details.
R s a collaborative project with many contributors
e 'contributors()’ for more information an
"Titation()" on how to cite R or R packages in publications.
Type 'demo()’ for some demos, 'help()' for on-line help, or
“help.start()’ for an HTML browser interface to help.
Type "q0" To quit R.
[workspace Toaded from ~/.RDatal
Loading required package: urca
Files Plots Packages Help Viewer =0
= export -
11| (fop Level) ¢ RScript ¢
Environment History Connections =0
> '3 ust~ |G-

2 Import Dataset -
=

Figure 2. RStudio Screen

31

https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

1. Download RStudio
from http://rstudio.org/download/desktop and

Install it. Leave all default settings in the

Installation options.

RStudio
Desktop
Open Source
License

RStudio 1.2.1335 - Windows 7+ (64-bit)

32

http://rstudio.org/download/desktop
https://download1.rstudio.org/desktop/windows/RStudio-1.2.1335.exe

Step 3: Open the R File in RStudio

To open the R script used in this illustration, click the

File button in the top-left corner and then click Open

File.

Then browse to the folder where the R program is

stored, select the file and click Open.

R5tudio
File Edit Code Xiew Plots Sessien Build Debug Profile Tools Help
Mew File L = Addins ~
MNew Project...
Open File... Ctrl+0 +Run | *F Source ~
Reopen with Encoding...
Recent Files 3
Open Project...

Open Project in New Session..,

Recent Projects 4
Import Dataset L4
Save Ctrl+5

Save fs...

Save with Encoding...

Save All Ctrl+Alt+5

Knit Document Ctrl+Shift+ K
LCompile Report...

Bublish...

Print...

Close Ctrl+W

Close All Ctrl+Shift+ W
Close All Except Current Ctrl+Alt+Shift+W
Close Project

Quit Session... Ctrl+0Q

Figure 3. Open R File in RStudio

33

Console Terminal Jobs

R version 3.6.0 (2019-04-28) -- "P
copyright (c) 201% The R Foundatio
Platform: x86_64-wbd-mingw32/x64 (

R is free software and comes with
You are welcome to redistribute it
Type "Ticense()' or "licence()’ fo

R is a collaberative project with
Type '"contributors()’ for more inf
"gitation()’ on how to cite R or R
Type ‘demo()’ for some demos, "hel
"help.start() ' for an HTML browser
Type 'q)' to quit R.

[workspace loaded from ~/.RData]

Loading required package: urca

Step 4: Prepare the Data

The R Program consumes a data file which should
have at least 2 variables in CSV format (with header).
Save the data file to the same folder as the R file. In
this illustration, the data for Indian as mentioned in
the data section named ly (logarithms of real GDP
per capita) and Im (logarithms of the ratio of bank
deposit liabilities to nominal GDP) are used are

Included in the data file.

1d,1m, 1y
208.62485%919,20.77381812,-17.98541486
20.79894126,20.67734489,-17.96693288
20.69384131,20.68832464, -18.80374521
20.61918585,20.535929548,-17.95811@52
20.68974314,208.59621789,-17.92596942
20.789320866,20.63942229,-17.908685082
20.96381185,20.64238345,-17.87278571
21.1844225,20.71683515,-17.891859%4
21.85589561,208.63491128,-17.8391267
21.14386763,20.64816836,-17.83123793
21.2656769,20.6577318,-17.80049648

Figure 4. Sample Data File for the R Script

34

Step 5: Run the R Script

There are different ways in RStudio you can run R
code. The first choice is to “source” the file, i.e. to
evaluate all the R code In the opened file. Please
click the Source button in the top-right side in the
code editor. Alternatively, in Windows, you may press

Ctrl + Shift + S to source a file.

35

Ritudic
Eile Edit Code Miew Plots Session Build Debug Profile Tools Help
@ - * . 5 * Adding *
97 untitiea1 9 india_v4.n = 1
GUrcE an Save L S =+ B
1 # helper function to Toad nstall packages
3+ load_package <- function (package) |
4+ if (‘require(package, character.only=TRUE])
5 install. packages (package, quiet = TRUE);
1 require(package, character.only=TRUE]
-1
a
10
11
12 Toad_package("tseries") # For unit RooT Test
13 Tload_package("urca”) # For Coimtegration Test
14 TNoad_package("vars") & For wvas
15 Toad_package("fBasics") # For Descriptiwve T
16 Tload_package("rstudioapi™} # To pDetect script pirectory
18 script_folder <- dirname(rstudicapi::gertactivenocumentcontext()ipath)
19
20 dndia_data <- read.csv(pasteO(script_folder, “/india.csv")) # Data f
1
22 _dat - india_dat |
23
24 tati
25
26 desc_stat <- basicstats({india_data
27 print{desc_stat)
28
28 1y india_datal[, "1y’
0 Im india_datal, "Im’
31
3z
33
34 adf_ Ty <- adf.test(ly
35 adf_Im <- adf.test(Im
36
37 adf_dly <- adf.test(diff(ly))]
38 adf_dlim <- adf.test(diff(Im))
39

Figure 5. Source R File in RStudio

R, being a scripting language, can be run line by line
or evaluate only selected area in your code. When
only part of the code is to be evaluate, select the
required part of the code, and then click R.
Alternatively, in Windows, you may press Ctrl + Enter

to run selected code.

File Edit Code View Plots Session Build Debug Profile Tools Help

> O | == d
Intitied o 4 =
e rd - -
1oaf pat

3 - load_package <- function (package

4 if (!reguire(package, character.only=7TRrUE))

5 install.packages(package, quiet - TRUE);

6 require{package, character.only=TRUE)

8

9
10 # Install and load the required R packages
11
12 load_package{"tseries”) # Fo
13 Tload_package{"urca"™) # ro
14 Tload_package{“vars") # For \
15 load_package("fBasics") # For Descriptive statistics
16 Tload_package(“rstudioapi”™) # cript pirector
18 script_folder dirname(rstudioapi: :getActivebocumentContext()ipath
19

india_data read. csv(paste0(script_folder, "/india.cs
india_data india_datal, c<("1y", "Im")]

desc_stat basicstats(india_data

print{desc_stat

Figure 6. Evaluate Selected R Code

36

Execution result will be shown in the Console Pane.
You are now ready to analyze the data interactively

using R.

Rstudic - o x
File Edt Code Yew Plots Session Buid Debug Profile Tools Help
o - oplar- Go to Remunctic ~ ageins + B o
©Unttiedt « @] ineia vk =] console Terminal - Jobs =0
seurczonsae | 4 £ o | - -

1 & a helper function to load 11 packages > india_dara

2 1

3~ load_package <- function (package 1 -17.98341

4- if (require(package, character.only-TRue)) { 2 -17.9669%

5 install. packages (package, quiet - TRUE) 3 -1B.00375 2

& require(package, character.only-TRUE 4 -17.95811

7 s -17.92597

5 3 & -17.90869 20.63942

9 7 -17.87271 20.84238

10 # nstall an ed & s -1 20.71604

11 a 20

1z load_package('ts 10

13 Toad_package(1

14 Toad_package(12

5 Toad_package(fBasics’) # 13

16 Toad_package("rstudioapi” 14

17 5

18 script_folder < dirname(rstudioapi::getactiveDocumentcontext () fpath) 16

19 17

20 dndiadata <- read.csv(pasted(script_folder, "/india.csv")) # e in the as the e |l 18

2 19

2 dndiasgaty <- findia_daval, c("ly", "In")] 20

22 2

24 4 Descriptive s 22

25 23

26 desc_stat < basicstats(india_data, 21

7 print(desc_stat) 25

F13 26

20 Ty <- india_dara[, "y 27

30 n < fndia_datal, "Tm"] 28

1 29

32 # unit Root Te ADF Test 30

33 31

3¢ agf_ly < adf.rest(ly 32

35 adf_Im < adf.test(Im) 33

36 34

7 adf_dly < adf.test(diff(ly)) 35

38 adf_dlm < adf.test(diff(In)) 36

39 37

40 print(list(adf_ly-adf_ly, adf_In-adf_Im, adf_dly-adf dly, adf_din-adf_din 38

a1 39

4z & cointegration Test - Johanser 0

43 4

42 lag < 5 # lag-length for the syste b

45 43

46 jotest=ca.jo(data.frame(ly, 1m), type="trace”, K=lag, ecdet="none”, spec="longrun"} 24

47 Jorest_summary - summary(jotest 45 -17.12162 23.7B916

4 46 -17.06987 23.68324

49 print(jorest_summary 47 -17.01195 23.77060

50 48 -16.98734 23.87160 ~

Figure 7. The Console Pane in RStudio

37

Step 6: Data Analysis

Install Required Libraries

Before the analysis, it is required to first install the required
libraries in R.

R Code
A helper function to load and install packages

load_package <- function (package) {
if ('require(package, character.only=TRUE)) {
install.packages(package, quiet = TRUE);
require(package, character.only=TRUE)

}
}

e A helper function is defined here to simplify the package
installation process.

e The function accepts an argument of the package name
and tries to load the package.

o If the package isn'’t installed yet, it installs and loads the
package into the environment.

38

R Code
Install and load the required R packages

load_package("tseries") # For Unit Root Test

load _package("urca") # For Cointegration Test
load_package("vars") # For VAR
load_package("fBasics") # For Descriptive Statistics
load_package("rstudioapi”) # To Detect Script Directory

After that 5 packages are installed using the function.
These packages are

tseries (for the unit root test),

urca (for cointegration test),

vars (for VAR estimation),

fBasics (for descriptive statistics),

rstudioapi (for a function detecting the script path).

39

Load Data
R Code

script_folder <-
dirname(rstudioapi::getActiveDocumentContext()$path)

india_data <- read.csv(pasteO(script_folder, "/india.csv"))
india_data <- india_data[, c("ly", "Im")]

This part of the code loads the data in CSV format named
india.csv into the environment.

40

Descriptive Statistics
R Code
Descriptive Statistics

desc_stat <- basicStats(india_data)
print(desc_stat)

ly <- india_data[, "ly"]
Im <- india_datal[, "Im"]

ly Im
nobs 04.000000 ©04.000000
NAs 0.000000 0.000000
Minimum -18.003745 20.539295
Maximum -16.148911 24.900501

1. Quartile -17.700314 21.221314
3. Quartile -16.976296 23.882365

Mean -17.321299 22.591099
Median -17.495277 22.566395
Sum -1108.563121 1445.830368
SE Mean 0.064328 0.184869
LCL Mean -17.449849 22.221669
UCL Mean -17.192749 22.960530
Variance 0.204841 2.187292
Stdev 0.514627 1.478950
Skewness 0.729537 0.061804
Kurtosis -0.575911 -1.421720

Figure 8. Descriptive Statistics Output

41

Unit Root Test
R Code

ly <- india_datal, "ly"]
Im <- india_datal[, "Im"]

Unit Root Test - ADF Test

adf ly <- adf.test(ly)
adf_Im <- adf.test(Im)

adf_dly <- adf.test(diff(ly))
adf_dim <- adf.test(diff(Im))

print(list(adf_ly=adf ly, adf Im=adf Im, adf dly=adf dly,
adf _dlm=adf_dlm))

This part of the code first explicitly defines 2 variables from the
dataset for better readability. ADF unit root test are then run to
test for unit root in these variables.

42

$adf_ly
Augmented Dickey-Fuller Test
data: ly
Dickey-Fuller = 1.0744, Lag order = 3, p-value = 0.99
alternative hypothesis: stationary
$adf_1m
Augmented Dickey-Fuller Test
data: 1m
Dickey-Fuller = -2.8639, Lag order = 3, p-value = 0.2249
alternative hypothesis: stationary
$adf_dly
Augmented Dickey-Fuller Test
data: diff(ly)
Dickey-Fuller = -4.595, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary
$adf_dlm
Augmented Dickey-Fuller Test
data: diff(lm)

Dickey-Fuller = -4.0218, Lag order = 3, p-value = 0.01449
alternative hypothesis: stationary

Figure 9. ADF Unit Root Test Output

For each variable in the testing, the ADF unit root test using the
default configuration cannot reject the null hypothesis that the
series contains a unit root. The unit root tests on the first
difference of these variables show that both the first-differenced
time series are stationary.

The results show that both the variables ly and Im are I(1) at 5%
level of significance.

43

For more information about the adf.test function, please see the
document available at https://cran.r-
project.org/web/packages/tseries/tseries.pdf.

44

https://cran.r-project.org/web/packages/tseries/tseries.pdf
https://cran.r-project.org/web/packages/tseries/tseries.pdf

Cointegration Test
R Code
Cointegration Test - Johansen
lag <- 5 # lag-length for the VAR system

jotest=ca.jo(data.frame(ly, Im), type="trace", K=lag,
ecdet="none", spec="longrun")
jotest_ summary <- summary(jotest)

print(jotest_summary)

The Johansen cointegration test results shows that these time
series are not cointegrated at 5% level of significance. For more
information about the ca.jo function,

please see the document available at
https://www.rdocumentation.org/packages/urca/versions/1.2-
9/topics/ca.|o.

T
Johansen-Procedure
HHHHH S

Test type: trace statistic , with linear trend

Eigenvalues (lambda):
[1] @.235817473 0.003345041

Values of teststatistic and critical values of test:
test 1@pct 5Spct 1pct

r<=11 .20 6.50 8.18 11.65
r=@ | 16.07 15.66 17.95 23.52

Figure 10. Johansen Cointegration Test Output

45

https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo
https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo

VAR Estimation
R Code
VAR Estimation

var_data = data.frame(dly=diff(ly), dim=diff(Im)) # First
difference the data: I1(1) and no cointegration at 5%
significance level

obs <- nrow(var_data)

var_ldy |ldm <-VAR(var_data, p=lag, type="const") #
Sample VAR Model Estimation
print(var_Ildy _ldm)

Before we can conduct the Granger causality test, an VAR
system is estimated.

For more information about the VAR function, please see the
document available at https://cran.r-
project.org/web/packages/vars/vars.pdf

46

https://cran.r-project.org/web/packages/vars/vars.pdf
https://cran.r-project.org/web/packages/vars/vars.pdf

VAR Estimation Results:

Estimated coefficients for equation dly:

Call:
dly = dly.11 + dlm.11 + dly.12 + dlm.12 + dly.13 + dlm.13 + dly.14 + dlm.14 + dly.15 + dlm.15 + const
dly.11 dim.11 dly.12 dim.12 dly.13 dim.13 dly.14 dlm.14 dly.15 dim.15
0.238345094 0.103037302 0.154311318 -0.017283784 ©.092061345 -0.035855633 -0.006708777 ©0.044017979 0.228922624 ©.022232389
const

0.001760934

Estimated coefficients for equation dlm:

Call:
dlm = dly.11 + dlm.11 + dly.12 + dlm.12 + dly.13 + dlm.13 + dly.14 + dlm.14 + dly.15 + dlm.15 + const

dly.11 dim.11 dly.12 dim.12 dly.13 dim.13 dly.14 dlm.14 dly.15 dlm.15 const
0.18946899 0.04299033 -0.37711831 -0.23527690 -0.62410003 0.14063597 0.14642836 -0.11428841 -0.30789598 0.08814892 0.10610363

Figure 11. VAR Estimation Result

47

Granger Causality Test

R Code

granger.mpl <- function(data, restriction, causality, lag,
Nobs, df, Nos)

{
var.u<-VAR(data,p=lag,type="const")

unrestricted<-det(cov(as.matrix(resid(var.u))))

var.r<-restrict(var.u,method="man",resmat=restriction)
restricted<-det(cov(as.matrix(resid(var.r))))

value.test<-(Nobs-lag-(1+lag*Nos))*(log(restricted)-

log(unrestricted))
p<-pchisq(value.test, df, lower.tail=FALSE)

return(matrix(c(df,value.test,p),nrow=1,
byrow=TRUE,dimnames=list(c(causality),c("df",

"chi2", "p))))
)

48

Linear Granger-causality Test

For M causes Y

resl <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1), nrow=2,
byrow=TRUE)

granger.mpl(var_data, resl, "Y <- M", lag, obs, lag, 2)

For Y causes M

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5), 1),
nrow=2, byrow=TRUE)

granger.mpl(var_data, res2, "M <- Y", lag, obs, lag, 2)

The Granger causality test results show that, the variable Im (M)
Granger cause ly (Y) and ly (Y) does not Granger cause Im (M),
at 5% level of significance.

df chiAz p
Y <- M 5 12.15263 0.03275519

df chiA2 p

M<-Y 5 2.618145 0.7586064

Figure 12. Granger Causality Test Result

49

Export the Residuals of the VAR System for Further
Analysis

R Code

var_resid <- resid(var_Idy Idm) # Get the residuals from
the VAR system

Export residuals for further processing

write.table(var_resid], 'dly'], file = pasteO(script_folder,
"lvar_dly resid.csv"), col.names = FALSE, row.names =

FALSE)

write.table(var_resid][, 'dlm’], file = pasteO(script_folder,
"lvar_dim_resid.csv"), col.names = FALSE, row.names =
FALSE)

Finally, the residuals are exported into 2 files separately to be
used in the next part of the analysis.

50

Non-linear Granger Causality Test

The sample program is written in C. The C/C++
languages are generally implemented as a compiled
language, I.e. the source code of the program is
compiled into machine code before executing. A
C/C++ compiler is therefore required in order to
execute the program. In this illustration, CodeBlocks,
a user-friendly free and open-source IDE (Integrated
Development Environment) is used to run the
program to simplify the code execution process. The
selected CodeBlocks installer comes with the GNU
Compiler Collection (GCC)?, one of the most popular
C/C++ compilers, as included in the bundled MinGW?

development environment for Windows.

1 https://gcc.gnu.org/
2 http://www.mingw.org/

51

https://gcc.gnu.org/
http://www.mingw.org/

Step 1: Download and Install CodeBlocks

Go to the official website of CodeBlocks:

http://www.codeblocks.org

Click the Binaries page link under Downloads in the
main menu on the left hand side. Alternatively, direct
go to this URL

http://www.codeblocks.org/downloads/binaries and

select the CodeBlocks version for your operating

system.

In this illustration, the version codeblocks-
17.12mingw-setup.exe is used. This setup file
Includes the G++ compiler, which is one of the most

popular C++ compilers.

The selected version of CodeBlocks can be

downloaded directly form this URL at

52

http://www.codeblocks.org/
http://www.codeblocks.org/downloads/binaries

http://sourceforge.net/projects/codeblocks/files/Binar

les/17.12/Windows/codeblocks-17.12mingw-

setup.exe

After downloading the setup file, open it to install

CodeBlocks.

53

http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe

Step 2: Prepare the Source Code and Data Files

Save the source code file to the same folder as the
output files from the R code. There are three files
Involved, namely, the file of residuals generated from
previous steps, i.e. var dlm resi.csv, and
var_dly resid.csv, the source code file of the C/C++

program, z.cpp.

Z.cpp

This is the source code of the program.

var_dlim_resid.csv

This is the data file to be loaded by the program

as the data for variable x

54

var_dly resid.csv

This is the data file to be loaded by the program

as the data for variable y

Configurations in the Source Code File (optional)

There are some configurable parameters in the

source code.

Excerpts from Source Code:

#define Nobs 58
#define infilel "var _dlm_resid.csv "
#define infile2 "var_dly resid.csv"

#define outfile "output.txt"

double epsilon=1.5;

Int M=5;

55

- Nobs: the number of observations in the input

files.

- Infilel: the name of the input file for the time
series variable x. When running the program, the
program expects there is a file named exactly as
specified here to be used as the values of the

time series variable Xx.

- infile2: similar to infilel - the name of the input

file for the time series variable y.

- outfile: the name of the output file. After
successful program execution, an output file with
the execution result will be generated. This

parameter specifies the output file name.

56

- epsilon: the epsilon parameter used in the
estimation.

- m: the number of lags

Replace these parameters with the desired values
should there be any required changes in the names
of the files, the number of observations or the epsilon

parameter.

Data Format of the Data Files (var_dly resid.csv and

var_dlm_resid.csv):

0.142970455
-6.34E-05
0.018%360068
-0.108781912
-0.082939218
0.0637857893
0.118885115
0.01825455
-0.125648739
0.05887719%
-0.054504784
0.083151366
-0.013825159
0.012672463
-0.04%037041

Figure 8. Sample Data Format for the Input Files

57

In the input file is a single column of the time series.
Each value in a row will be loaded as a data point for

the corresponding time series.

58

Mame

(% India.csv

¥ india.R
[war_dlm_resid.cav
i war_dly_resid.csv

€ z.cpp

Figure 10. Source Code and Data Files

Step 3. Open the z.cpp source code file with
CodeBlocks

The required files and software are ready. Open
CodeBlocks

59

W Start here - CodexBlocks 17.12

File Edit View Search Project Buld Debug Fortran waSmith Tools Tools+

Plugins DoxyBlocks

- =] X
Settings Help
iFeBd ¢ uma/qdaiorson Bir ehe R AR ML)
im o | PREBRIES| <N e biD » o Jdbse - FEITECE LA |
e —— 15 x
< | Projects | symbols Fies b
Q) Workspace
.‘ ‘The open source, cross-platform IDE
|
Release 17.12 rev 11256 (2017-12.28 10.44:41) 0c 510 bt
T e— Q) masean
62
)) v forums Report o new festur
Recent projects
No recent
0_=
Recent fiies
No recent fies
©2004 - 2017, The Code:Biocks Team
Logs others x|
/| Code::Blocks % | | Searchresuits X | /| Car X | £ Buildlog x| ¥ Buidmessages x| J CooCheckNera++ X | /) CppCheck/Vera++messages X| /) Cscope x| €)Debugger | /i Doxylocks X JjFortraninfo X | < Closedfleslist X | .} Threadsearch X
Start here default =

Figure 11. Welcome Screen of CodeBlocks

60

In the upper-left corner, click Eile then click Open

H Start here - CodenBlocks 17.12
File Edit View 5Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins |

QRG> 3 OB VE

Open with hex editor

Open default workspace

Recent projects r

Recent files 4

Import project r
B savefile Crl-5

Save file as.,

Save project
Sawe project as,.,

Sawe project as ternplate,.,

Save warkspace

Save workspace as...

& Save everything Ctrl-Shift-S

Figure 12. Open File in CodeBlocks

Browse to the folder where the 3 downloaded files

are saved. Then, select the z.cpp file and click Open.

61

MName

[f_kﬂ' India.csw
3 india.R
[f_kﬂ' var_dlm_resid.csv

[va r_dby_resid.csv
] zopp

Date modified

2019 3:51 AM
019 4:00 AM
019 4:04 AM
2019 404 AM

2019 2:41 AM

-
‘
-
L

7/6/.
7/6/.
T t'.’
7/6/.
776/,

Type
CSV File
R File
CSV File
CSV File

C++ source file

Size

ame:

V| All files (*4)

Figure 13. Choose the Source Code File

62

Cancel

The source code of the program is displayed inside
the CodeBlocks editor. In case of any required
change, for example, change of the sample size or
names of the input files, please modify the parameter

values accordingly and save.

H z.cpp - CodenBlocks 17,12
File Edit View Search Project Build Debug Fortran wxSmith Tools Toels+ Plugins DoxyBlocks Settings Help

CeE@ ¢ umaQalfgrion B0 Y5625 4161 Y 11 @ | 5] W[<dobal
e PRRBRBREY < Ad ke RN TR NEIEEIEEE RN
czizpeast. & lSmrthare XT Z.cpp X]
4 | Projects Symbols Files ¥ 1
OWorkspace 2 T ——
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <math.h>
(3
7 #define maxia,b) arbla:b
8 #define Nobs 44
a #define infilel "CR_ldr 14b.txt"
10 #define infile2 "CR_ldr l4c.txt"
11 #define outfile "output.txt"
1z
13 double epsilon=1.5;
14 int m=5;
15 int n;
16 double Q, **&, C[4]:
17
1g
19
20
21 void redun(double *x, double *y, int N, int m, int mmax, double epsilon)
22 [t
23
24 int i, 3, s:
25 double disx, disy, disz, Cy, Cxy, Cyz, Cxryz;
28
27 Co=Cy=Cry=Cyz=Cxyvz=0.0:
28 n =N - mmax;
29
30 for (i=mmax;i!=N;i++)
31 —| {
32 for (j=mmax:j!=N:;j++)
33 if (§'=1)
34 - {
35 disx = disy = 0.0;
36 for (s=l:s!=m+l;3++%)
37 disx = max(fabs (x[1-8]-x[j-s]),disx);
38
39 for (s=l:;s!=mmax+l;s++)
40 disy = max(fabs(y[i-s]-y[j-s]),.disy);
41

Figure 14. Code Editor in CodeBlocks

63

Step 4: Build the Code

A build process is required in order to execute the
C++ program. After the build process, an executable

file, in our case z.exe will be created.

Click the Build button

H zcpp - Code:Blocks 17,12

File Edit Yiew Search Project Build Debug Fortran weSmith Tools Tooks+ Plugins DowyBlocks Settings Help

I IERIE QAmiar 3o Bi e sE6m%l o G %] W ;| <giobal>
e P EBRIES| e] v| @ o Lo fa

o . = Start here =

1 Projects | Symbals Fies #
GJ-'un'spn-:t 4

18 volid redun (dooble *x;, double *y, int H, int m, int mmax, double epsilon

Figure 15. Build Button in CodeBlocks

64

After the build completed, there are 2 new files in the

folder, namely z.exe and z.o.

The z.o file is an intermediate file produced during the
build process. It is not directly executable but is used
by the CodeBlocks IDE to produce the final

executable program, i.e. the z.exe file.

Mame

[H»:l India.csv

D india.R
l;_'f var_dlm_resid.csv
% var_dly_resid.csv

i L.Exe

Y zo

Figure 16. Generated Files after the Build Process

Step 5. Run the Executable

The executable program z.exe has been created

from source code and is ready to be run. It can be run
65

by just double clicking the z.exe in the folder.
Alternatively, using the CodeBlocks IDE, users can
run the program by clicking the Run button in the user

Interface, as shown below.

] zcpp - CodenBlocks 17,12
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugine DowyBlocks Settings Help
FeEE 3 H | ARG »r 3O L A AL

e :j <ghabal>
| PREB RSN e Ol = o 2 b dm =i

Management * Start here x| g
1 Projects | Symbols Fies B 3 ing
D Workspace 4 incl
5 ncl Lfabs
&
T =11
& 1=Fir
=] i=fir
10 l=fir
13 double 1
1% nt
15 1nt m;
1l double 2,
17
18 volid redundouoble *x, double *y, int N, int m, int mmax, double epsilon
19 -l
20
Z1 nt L, j.
22 double disx, 4 d
23
24 Gy

Figure 17. The Run Button in CodeBlocks

After the program execution, the execution time is
reported. The return value O signals the success of

the program execution.

66

Press any key to close the prompt.

=33 returned O (Oxz0) - 0.0l6 =
‘ress any key to continue.

Figure 18. Screen after Successful Run

Step 6: Review the Output

Finally, to view the execution result, go to the
program folder. A plain text output file output.txt has
been generated after the execution. (as described In

the configuration section in Step 2, the output file

67

name can be configured as needed. The default file

name is output.txt)

Mame B Date medified Type Size
[India.csv 7/6/2019 3:51 AM SV File KB
¥ india.R 7/6/2019 4:00 AM R File 3KE
_.I cutput.tt 7/6/2019 5:09 AM Text Document 1 KB
(% var_dim_resid.csv 7/6/2019 404 AM CSV File 2 KB
[var_dly_resid.csv 7/6/2019 4:04 AM CSV File 2 KB
o z.cpp 7/6/2019 2:41 AM C++ source file 5KB
[0 z.exe 7/6/2019 5:09 AM Application 32 KB
_'T Z.o 7/6/2019 5:09 AM O File &6 KB

Figure 19. Output File Generated from the Program

68

Open the output.txt to view the result. The output file
reports the Sample Size, the Epsilon parameter value,
the HJ Statistic and the P-value in a CSV (comma-

separated values) with header format.

Eile Edit Format Wiew Help
SampleM, Epsilon, Hlstat, P-wvalue
58,1.500008,8.773846,8.219748

Ln3, Col1

Figure 20. Result from the Program

69

Appendix

Source Code of the R Program

A helper function to load and install packages

load_package <- function (package) {
If ('require(package, character.only=TRUE)) {
Install.packages(package, quiet = TRUE);

require(package, character.only=TRUE)

}
}

Install and load required R packages

load_package("tseries") # For Unit Root Test
load_package("urca") # For Cointegration Test

load _package("vars") # For VAR

70

load package("fBasics") # For Descriptive
Statistics
load_package("rstudioapi") # To Detect Script

Directory

script_folder <-
dirname(rstudioapi::getActiveDocumentContext(
Y$path)

India_data <- read.csv(pasteO(script_folder,
"/india.csv")) # Data file in the same folder as the
R program

iIndia_data <- india_datal, c("ly", "Im")]

Descriptive Statistics

desc_stat <- basicStats(india_data)

print(desc_stat)

71

ly <- india_datal, "ly"]

Im <- india_data[, "Im"]

Unit Root Test - ADF Test

adf_ly <- adf.test(ly)

adf_Im <- adf.test(Im)

adf_dly <- adf.test(diff(ly))
adf_dim <- adf.test(diff(Im))

print(list(adf _ly=adf ly, adf |Im=adf Im,
adf dly=adf dly, adf dim=adf dim))

Cointegration Test - Johansen

lag <- 5 # lag-length for the VAR system

72

jotest=ca.jo(data.frame(ly, Im), type="trace",
K=lag, ecdet="none", spec="longrun")

jotest_summary <- summary(jotest)

print(jotest_summary)

VAR Estimation

var_data = data.frame(dly=diff(ly), dim=diff(Im)) #
First difference the data: I(1) and no cointegration
at 5% significance level

obs <- nrow(var_data)

var_Ildy Idm <-VAR(var_data, p=lag,
type="const") # Sample VAR Model Estimation
print(var_Idy ldm)

granger.mpl <- function(data, restriction,

causality, lag, Nobs, df, Nos)

73

{
var.u<-VAR(data,p=lag,type="const")

unrestricted<-det(cov(as.matrix(resid(var.u))))

var.r<-
restrict(var.u,method="man",resmat=restriction)

restricted<-det(cov(as.matrix(resid(var.r))))

value.test<-(Nobs-lag-
(1+lag*Nos))*(log(restricted)-log(unrestricted))
p<-pchisg(value.test, df, lower.tail=FALSE)

return(matrix(c(df,value.test,p),nrow=1,

byrow=TRUE,dimnames=list(c(causality),c("df",
"chin2", "p"))))
}

Linear Granger-causality Test

74

For M causes Y

resl <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1),
nrow=2, byrow=TRUE)

granger.mpl(var_data, resl, "Y <- M", lag, obs,

lag, 2)

For Y causes M

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5),
1), nrow=2, byrow=TRUE)
granger.mpl(var_data, res2, "M <- Y", lag, obs,

lag, 2)

var resid <- resid(var_ldy Idm) # Get the

residuals from the VAR system

EXxport residuals for further processing

75

write.table(var_resid], 'dly'], file

pasteO(script_folder, "lvar_dly resid.csv"

N’

col.names = FALSE, row.names = FALSE)
write.table(var_resid], 'dlm’], file =
pasteO(script_folder, "lvar_dlm_resid.csv"),

col.names = FALSE, row.names = FALSE)

76

Source Code of the C/C++ Program - z.cpp

#include <stdio.h> // For file input / output
#include <stdlib.h>
#include <math.h> // Use Math Library for

functions fabs, exp, etc...

#define max(a,b) a>b?a:b

#define Nobs 58 // Number of Observation
#define infilel "var_dly resid.csv" // Input File
Name - First Variable

#define infile2 "var_dlm_resid.csv" // Input File
Name - Second Variable

#define outfile "output.txt" // Output File Name

double epsilon=1.5; // Epsilon Parameter
Int m=5; // Lag Length

Int n;

double Q, **A, C[4];

77

void redun(double *x, double *y, int N, int m, int

mmax, double epsilon)

{

Inti,j, s;

double disx, disy, disz, Cy, Cxy, Cyz, Cxyz;

Q=Cy=Cxy=Cyz=Cxyz=0.0;

n =N - mmax;

for (I=mmax;i!=N;i++)

{
for (j=mmax;)!=N;j++)
if (j!=i)
{
disx = disy = 0.0;

for (s=1;s!=m+1;s++)

disx = max(fabs(x[i-s]-X[}-s]),disXx);

78

for (s=1;sl=mmax+1;s++)

disy = max(fabs(y[i-s]-y[j-s]),disy);

iIf (disy <= epsilon)

{
Cy++;
A][I]++;

If (disx <= epsilon)

{
Cxy++;
A0+

}

disz = max(fabs(y[i]-y[j]]),disy);
If (disz <= epsilon)
{

Cyz++;

79

A2][1]++;

If (disx <= epsilon)

{
Cxyz++;
A[O][i]++;

}

}
} I/l end condition |Yi - Yj| < epsilon
} /I end loop over |

} // end loop over |

Q = (double) Cxyz/Cxy - (double) Cyz/Cy;,

0] = Cxyz/(double)(n*(n-1));
1] = Cxy/(double)(n*(n-1));
2] = Cyz/(double)(n*(n-1));
3] = Cy/(double)(n*(n-1));

O O O O

80

for (i=0;i1=4;i++)

for jJ=mmax;j!=N;j++)

{
A[i][j] /= (double)(n-1);
Alilj] -=CJiJ; //Cto A

}

/* normalise the time series to unit std. dev. */

void normalise(double *x, int N)

{
Int 1;

double mean=0.0, var=0.0;

for (I=0;i!1=N;I++)
{
mean += X]i];

var += X[i]*X[i];

81

mean /= (double)(N);
var /= (double)(N);

var -= mean*mean;

for (i=0;il=N;i++)

X[i] = (x[i]-mean)/sqrt(var);

return,;

}

I/ erf function (Error Function)

extern double erf(double x) {

double t, z, retval;

z = fabs(x);

82

t=1.0/(1.0+05*2);
retval=t*exp(-z*z-1.26551223 +t*
(1.00002368 +t*
(0.37409196 +t*
(0.09678418 +t*
(-0.18628806 +t *
(0.27886807 +t*
(-1.13520398 +t*
(1.48851587 +t*
(-0.82215223 +t*
0.1708727)))))))));
if(x <0.0)

return retval - 1.0;

return 1.0 - retval;

Int main()
{

83

double x[Nobs], y[Nobs], *ohm, S2, \

HJ TVAL, HJ_Pval, d[4], sigmal4][4]; //hv;
Inti, J, I, k, K, mmax; //ieps, nn;
FILE *fil;

A = (double **) malloc(4*sizeof(double *));

for (i=0;i'=4;i++)
A[l] = (double *) malloc(Nobs*sizeof(double));

K = (int)(sqrt(sqrt(Nobs-m)));

ohm = (double *) malloc(K*sizeof(double));
ohm[0] = 1.0;

for (k=1;k<K;k++)

ohm[K] = 2.0*(1.0-k/(double)(K));

//get external data

84

fil=fopen(infilel1,"r");

for (i=0;i<Nobs;i++)
fscanf(fil,"%lf",&x[i]);

fclose(fil);

fil=fopen(infile2,"r");

for (i=0;i<Nobs;i++)
fscanf(fil,"%lIf", &y[i]);

fclose(fil);

for (j=0;j!'=4;j++)
{
C[j] = 0.0;
for (i=0;i'=Nobs;i++)

A[jlli] = 0.0;

85

normalise(x, Nobs);

normalise(y, Nobs);

MMmax=m,

redun(x,y,Nobs,m,mmax,epsilon); // call the

redun function defined above

for (i=0;i'=4;i++)

for (j=0;j!=4;j++)
{

sigmali][j] = 0.0;

for (k=0;k!=K;k++)

for (I=mmax+k;/'=Nobs;|++)
sigmaliljl += 4.0*xohm[Kk]*(A[][II*A[][I-
K]+A[I][I-K]*A[][1D/(double)(2*(n-k));

}

86

d[0] = 1.0/C[1];
d[1] = -C[O0)/(C[1]*C[1]);
d[2] = -1.0/C[3];

d[3] = C[2]/(C[3]*C[3));
$2=0.0;

for (I=0;i!=4;i++)
for (j=0;j!=4;j++)
S2 +=d[i]*sigmali][j]*d[];

HJ TVAL = Q*sqrt(n)/sqrt(S2);

/I CDF
if (HJ_TVAL>0)

HJ_Pval = 0.5 - .5*erf(HJ_TVAL/sqrt(2.0));
else

HJ_Pval = 0.5 + .5*erf(HJ_TVAL/sqrt(2.0));

fil=fopen(outfile,"w");

87

fprintf(fil, "SampleN, Epsilon, HJstat, P-value\n");
fprintf(fil, "%i,%f,%f,%f\n", Nobs, epsilon,
HJ TVAL, HJ Pval);

fclose(fil);

return(0);

}

88

C / C++ Quick Reference

#include

The #include directive is a preprocessor
command (which tells the compiler to do
something before the actual compilation process)
to include the file as specified to the current point).
For example, it is the line “#include <math.h>" at
near the top of the source code that make
necessary math functions such as exp
(exponential) and sqrt (square root) available in

the program.

#define

A preprocessor command to define a macro.

It can be used to define constants to be

89

substituted by the specified value in the source

code.

For example the line “#define Nobs 58" in
the source code instructs the preprocessor to
substitube “Nobs” with 58 in the program. A
macro can also be parameterized as in the line

“#define max(a,b) a>b?a:b”

Comment

Use “//” for Single line comment. Any string in the
same line after “//” is regarded as comments and

will be ignored by the compiler.

Use “/* */7 for multiple line comments. Any
string between “/* and “*/ is regarded as

comments and will be ignored by the compiler.

90

Entry Point of a Program

The function main() is the entry point of the

program.

If-statement

If (condition) statement
/[l the statement will be executed if the

condition is true

If (condition) {

91

/| statements to be executed if the condition is

true

If (condition) {

/| statements to be executed if the condition is

true

} else {

/| statements to be executed if the condition is

not true

92

If (condition_1) {

/| statements to be executed if the condition is

not true
} else if (condition_2) {

I/ statements to be executed if the condition_1
IS not true

/[and the condition_2 is true

} else {

93

/[l statements to be executed if all the
conditions above

/[1.e. condition_1 and condition_2 are false

For-loop

for (initialization_step; condition; increment) {

/] statements to be executed if the condition is

true

94

In a for loop, the initialization step is first run to
Initialize the counter. If the condition is true, the
statements inside the for loop are executed, and
then the increment step is run to update the

counter.

For example,

#include <stdio.h>

Int main()

{

for (inti=0;1<5; 1++) {
printf("%d\n", 1);

return O;

95

Output:

~ W N B+ O

The initialization step declare the counter i and
set it as O (the initialization step int 1 =0). The loop
run as long as the counter i is less than 5 (the
condition | < 5). After each loop the counter is
Increased by 1 (the increment step i++). The loop
terminates as the i is increased to 5 and no longer
prints the digit. In the above example, the “\n” in
the first argument to the printf function is a new

line character, and therefore in each loop the

96

counter 1 is outputted to a new line. The result in

this example is the same if the condition is i != 5.

Assignment Operations

Expres |Explanation

sion

a=Db |assign the value of b to the variable a, not
to be confused with the expression of the

equality between two variables.

a = b =|assign the value O to variables a and b

a+=Db |equivalenttoa=a+Db

a-=b |equivalenttoa=a-b

a*=b |equivalenttoa=a*b

al/=b |equivalenttoa=al/b

97

a++ return the value of a and then increase the

value of a by 1

Comparison Operators

A logical comparison returns a boolean value true
or false depending on the truth value of the

expression.

Expres |Explanation

sion

a == aisequaltob

al=b |aisnoequaltob

a<b aislessthanb

a>b |aisgreaterthanb

a<=Db |aislessthanorequaltob

98

a>=>b

a is great than and equalto b

99

Useful Math Functions as Defined in math.h

Functio | Explanation

n

exp return the number of the constant e raised

to the power to a floating-point number

sqrt return the square root of a floating-point

number

fabs return the absolute value of the given

floating-point number argument

100

