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Introduction 

 

 This document provides an introduction to the 

hand-on of linear and non-linear causality 

analysis. Guidance of necessary software 

environment setup and installation will be 

provided.  

 The sample code cover time series analysis 

techniques including unit root test, cointegration 

test, VAR estimation, linear Granger causality 

test and non-linear Granger causality test.  

 We illustrate the techniques by going through a 

simplified bivariate analysis with real economic 

data.  
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Data 

 

In this illustration, our data include information from 

India, from 1950 to 2014 obtained from the 

International Financial Statistics, the database of 

International Monetary Fund.  

 

India is selected as one the countries in the study 

because it meets our criteria that the country should 

have a population exceeding one million in 2017 and 

the database has enough data in all the variables. 
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It is difficult to directly measure both financial 

development and economic growth.  

 

Economic growth is commonly measured using real 

GDP per capita, see for example Gelb (1989), 

Roubini and Sala-i-Martin (1992), King and Levine 

(1993), and Demetriades and Hussein (1996).  

 

Similar to these studies, a logarithm of real GDP per 

capita is used to proxy economic growth and has 

been denoted as Y. 
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For the variable to measure financial development, it 

is a common practice (Gelb, 1989 and King and 

Levine, 1993) to use a ratio of some broad measures 

of the money stock to the level of nominal GDP. 

 

However, Demetriades and Hussein (1996) argue 

that this type of ratio may reflect more extensive use 

of currency rather than an increase in the volume of 

bank deposits.  

 

To circumvent the limitation, they recommend 

excluding currency in circulation from the broad 

money stock.  

 

In this illustration we follow their recommendation 

and use the logarithm of the ratio of bank deposit 

liabilities to nominal GDP as the first proxy for 

financial development and represented as M. 
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We exhibit the summary statistics of  where M and Y  

are the logarithms of the ratio of bank deposit 

liabilities to nominal GDP (M), and real GDP per 

capita (Y), respectively, for India. 
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Methodology 

 

In the literature on the subject of the relationship between 

financial development and economic growth, academics, 

such as Horng, et al. (2012) are interested in testing the 

following two hypotheses: 

 

H0
1 : financial development does not cause economic 

growth, and 

H0
2: economic growth does not cause financial 

development. 

 

Academics and practitioners, such as Horng, et al. (2012) 

and Fan, et al. (2018) employ linear causality to study 

whether there is any unidirectional or bidirectional 

causality between financial development and economic 

growth. Thus, they set H0
1′: financial development does 

not cause economic growth if there is no linear causality 

from financial development to economic growth. 
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However, in this illustration, we set  

 

H0
1:  financial development does not cause economic 

growth if there is no linear and no nonlinear causality from 

financial development to economic growth.  

 

Similarly, definitions are set for H0
2′ and H0

2. 

 

Ascertaining whether financial development and 

economic growth are cointegrated is an important piece of 

information. If financial development and economic 

growth are cointegrated, we conjecture that both demand-

following and supply-leading theories hold so that 

financial development and economic growth move 

positively together.  
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Thus, in this illustration, we examine the following 

hypothesis: 

 

H0
3: financial development and economic growth are not 

positively cointegrated. 
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In the following subsections, we will discuss cointegration 

and linear and nonlinear causality tests to analyze the 

relationship between financial development and economic 

growth in developing countries. We first discuss the 

cointegration approach in next subsection.  

 

3.2.1 Cointegration  

 

As mentioned in Section 3.1 M,  D,  and Y  have been 

designated to be the logarithms of the ratio of bank deposit 

liabilities to nominal GDP (M), the ratio of claims on 

private sector to nominal GDP, and real GDP per capita, 

respectively. If all the variables (M, D, and Y) are 

integrated in degree one, academics and practitioners will 

be interested in examining whether there is any 

cointegration relationship among the variables. To analyse 

the issue, we employ the Johansen cointegration test 

proposed by Johansen (1988), Johansen and Juselius (1990) 
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and Johansen (1991) as some studies, for example, 

Gonzalo (1994), confirm that the Johansen cointegration 

test performs better than the other cointegration tests, 

namely the ADF test (Engle and Granger, 1987). In 

addition, when GARCH errors exist in the model, Lee and 

Tse (1996) conclude that the bias is not too serious when 

using Johansen’s cointegration test if we compare its 

performance with other cointegration tests. 

 

Johansen and Juselius (1990) and Johansen (1991) 

develop a multivariate maximum likelihood (ML) 

procedure for the estimation of the cointegrating vectors. 

According to Johansen’s procedure, the p-dimensional 

unrestricted Vector Autoregression (VAR) model should 

be first specified with k lags: 

 

𝒁𝒕 = ∑ 𝑨𝒊𝒁𝒕−𝒊 + Ψ𝑫𝒕

𝑘

𝑖=1

+ 𝑈𝑡                                                                (1) 
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where 𝒁𝒕 = [𝑀𝑡 , 𝐷𝑡 , 𝑌𝑡  ]′  is a 3 × 1 vector of stochastic 

variables and 𝑀𝑡,  𝐷𝑡,  and 𝑌𝑡  are to be the logarithms of 

the ratio of bank deposit liabilities to nominal GDP, the 

ratio of claims on private sector to nominal GDP, and real 

GDP per capita in period 𝑡, respectively. 𝑫𝒕 is a vector of 

dummies and 𝑨𝒊  is a vector of parameters.  This VAR 

could be rewritten as: 

 

∆𝒁𝒕 = ∑ Φ𝑖∆𝒁𝒕−𝒊 + 𝚷𝒁𝒕−𝒊 + Ψ𝑫𝒕

𝑘−1

𝑖=1

+ 𝑈𝑡  .                                                (2) 

 

The hypothesis of cointegration is formulated as a 

reduced rank of the 𝚷 matrix where 𝚷 = 𝛂𝛃′ such that 𝛂 

is the vector or matrix of the adjustment parameter and  𝛃 

is the vector or matrix of the cointegrating vectors. 

According to Engle and Granger (1987), if the rank of 𝚷 

(r) is not equal to zero, then r cointegrating vectors exist. 
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The number of cointegrating vectors is less than or equal 

to the number of variables, which is 3 in our case. The 

likelihood ratio (LR) reduced the rank test for the null 

hypothesis of at most r cointegrating vectors is given by 

the following Trace statistic, and for the null hypothesis of 

r against the alternative of r+1 cointegrating vectors is 

known as the maximal eigenvalue statistic 

 

3𝜆𝑡𝑟𝑎𝑐𝑒 = −T ∑ ln (1 −

𝑚

𝑖=𝑟

𝜆𝑖+1)   ,       𝜆𝑚𝑎𝑥

= −T ln(1 − 𝜆𝑟+1)                                      (3) 

 

where 𝑚  is the maximum number of possible 

cointegrating vectors which is 3 in our case, in this 

illustration, 𝑟 = 0, 1, 2  and 𝜆1 > 𝜆2 > 𝜆3  denote 

eigenvalues of their corresponding eigenvectors v =

(𝑣1, 𝑣2, 𝑣3).If the null hypothesis of r cointegrating vectors 

is accepted, then the rank of the 𝚷 matrix equal to r and 

there is exactly r cointegrating vector. 
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3.2.2 Granger Causality 

 

Since our analysis presented in next section (see Table 1) 

confirms that all the variables 𝑀𝑡 , 𝐷𝑡 ,  and 𝑌𝑡   are I(1),  

academics and practitioners are interested in testing 

whether there is any causality relationship among the 

differences of the variables 𝑀𝑡 , 𝐷𝑡 , and 𝑌𝑡. We let  𝑚𝑡 =

∆𝑀𝑡, 𝑑𝑡 = ∆𝐷𝑡, and 𝑦𝑡 = ∆𝑌𝑡. This means that academics 

and practitioners are interested in testing whether there is 

any causality relationship among 𝑚𝑡, 𝑑𝑡, and 𝑦𝑡. Thus, in 

this illustration we will test whether there is any linear 

Granger causality and thereafter examine whether there is 

any nonlinear Granger causality among the variables 

𝑚𝑡, 𝑑𝑡, and 𝑦𝑡. 
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3.2.2.1 Linear Granger Causality 

 

To test the linear causality relationship between two 

vectors of stationary time series, we set 𝑥𝑡 =

(𝑥1,𝑡 , … , 𝑥𝑛1,𝑡)′  and 𝑦𝑡 = (𝑦1,𝑡 , … , 𝑦𝑛2,𝑡)′  say 𝑥𝑡 =

(𝑚𝑡 , 𝑑𝑡)′ and 𝑦𝑡 = (𝑦𝑡)′ , where there are 3 series in total. 

Under this setting, one could construct the following 

vector autoregressive regression (VAR) model: 

 

(
𝑥𝑡

𝑦𝑡
) = (

𝐴𝑥[2×1]

𝐴𝑦[1×1]
) +

(
𝐴𝑥𝑥(𝐿)[2×2] 𝐴𝑥𝑦(𝐿)[2×1]

𝐴𝑦𝑥(𝐿)[1×2] 𝐴𝑦𝑦(𝐿)[1×1]
) (

𝑥𝑡−1

𝑦𝑡−1
) + (

𝑒𝑥,𝑡

𝑒𝑦,𝑡
)                             

(4) 

 

where 𝐴𝑥[2×1]  and 𝐴𝑦[1×1]  are two vectors of intercept 

terms, 𝐴𝑥𝑥(𝐿)[2×2] , 𝐴𝑥𝑦(𝐿)[2×1]  , 𝐴𝑦𝑥(𝐿)[2×1] , and 
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𝐴𝑦𝑦(𝐿)[1×1] are matrices of lag polynomials, 𝑒𝑥,𝑡 and 𝑒𝑦,𝑡 

are the corresponding error terms. 

 

Testing the following null hypotheses: 𝐻0
1: 𝐴𝑥𝑦(𝐿) = 0 

and 𝐻0
2: 𝐴𝑦𝑥(𝐿) = 0   is equivalent to testing the linear 

causality relationship between 𝑥𝑡  and 𝑦𝑡 .There are four 

different situations for the causality relationships between 

𝑥𝑡  and 𝑦𝑡  in (1): (a) rejecting 𝐻0
1  but not rejecting 𝐻0

2 

implies a unidirectional causality from 𝑦𝑡  to 𝑥𝑡 , (b) 

rejecting 𝐻0
2 but not rejecting 𝐻0

1 implies a unidirectional 

causality from 𝑥𝑡  to 𝑦𝑡 , (c) rejecting both 𝐻0
1  and 𝐻0

2 

implies the existence of feedback relations, and (d) not 

rejecting both 𝐻0
1  and 𝐻0

2  implies that  𝑥𝑡  and 𝑦𝑡  are not 

rejected to be independent. Readers may refer to Bai, et al. 

(2010) for the details of testing 𝐻0
1 and/or 𝐻0

2.    
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If the time series are cointegrated, one should impose the 

error-correction mechanism (ECM) on the VAR to 

construct a vector error correction model (VECM) in order 

to test Granger causality between the variables of interest. 

In particular, when testing the causality relationship 

between two vectors of non-stationary time series, we let 

∆𝑥𝑡 = (∆𝑀𝑡 , ∆𝐷𝑡)′  and ∆𝑦𝑡 = (∆𝑌𝑡)′  be the 

corresponding stationary differencing series such that 

there are 3 series in total. If 𝑥𝑡  and 𝑦𝑡  are cointegrated, 

then instead of using the VAR in (1), one should adopt the 

following VECM model: 

 

(
∆𝑥𝑡

∆𝑦𝑡
) = (

𝐴𝑥[2×1]

𝐴𝑦[1×1]
)

+ (
𝐴𝑥𝑥(𝐿)[2×2] 𝐴𝑥𝑦(𝐿)[2×1]

𝐴𝑦𝑥(𝐿)[1×2] 𝐴𝑦𝑦(𝐿)[1×1]
) (

∆𝑥𝑡−1

∆𝑦𝑡−1
)

+ (
𝛼𝑥[2×1]

𝛼𝑦[1×1]
) ⋅ 𝑒𝑐𝑚𝑡−1 + (

𝑒𝑥,𝑡

𝑒𝑦,𝑡
) (5) 
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where 𝑒𝑐𝑚𝑡−1 is lag one of the error correction term, and  

𝛼𝑥[2×1]  and 𝛼𝑦[1×1]  are the coefficient vectors for the 

error correction term 𝑒𝑐𝑚𝑡−1. There are now two sources 

of causation of 𝑦𝑡(𝑥𝑡) by 𝑥𝑡(𝑦𝑡), either through the lagged 

dynamic terms ∆𝑥𝑡−1(∆𝑦𝑡−1) , or through the error 

correction term 𝑒𝑐𝑚𝑡−1. Thereafter, one could test the null 

hypothesis 𝐻0  : 𝐴𝑥𝑦(𝐿) = 0(𝐻0 ∶  𝐴𝑦𝑥(𝐿) = 0)  and/or 

𝐻0  : 𝛼𝑥 = 0(𝐻0 ∶  𝛼𝑦 = 0) to identify Granger causality 

relation using the LR test. 
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3.2.2.2 Nonlinear Granger Causality 

 

Bai, et al. (2010, 2011, 2018) and Chow, et al. (2018) 

extend the nonlinear causality test developed by Hiemstra 

and Jones (1994) and others to the multivariate setting. To 

identify any nonlinear Granger causality relationship from 

any two series, say {𝑥𝑡} and {𝑦𝑡} in the bivariate setting, 

one has to first apply the linear model to {𝑥𝑡} and {𝑦𝑡} to 

identify their linear causal relationships and obtain the 

corresponding residuals, {𝜀1̂𝑡} and {𝜀2̂𝑡}. Thereafter, one 

has to apply a nonlinear Granger causality test to the 

residual series, {𝜀1̂𝑡} and {𝜀2̂𝑡}, of the two variables being 

examined to identify the remaining nonlinear causal 

relationships between their residuals. This is also true if 

one would like to identify the existence of any nonlinear 

Granger causality relation between two vectors of time 

series, say 𝑥𝑡 = (𝑥1,𝑡 , … , 𝑥𝑛1,𝑡)′ and 𝑦𝑡 = (𝑦1,𝑡 , … , 𝑦𝑛2,𝑡)′ 

in the multivariate setting. One has to apply the VAR 
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model or the VECM model to the series to identify their 

linear causal relationships and obtain their corresponding 

residuals. Thereafter, one has to apply a nonlinear Granger 

causality test to the residual series. For simplicity, in this 

section we denote 𝑋𝑡 = (𝑋1,𝑡 , … , 𝑋𝑛1,𝑡)′  and 𝑌𝑡 =

(𝑌1,𝑡 , … , 𝑌𝑛2,𝑡)′ to be the corresponding residuals of any 

two vectors of variables being examined. We first define 

the lead vector and lag vector of a time series, say 𝑋𝑖,𝑡 , as 

follows:  
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for 

𝑋𝑖,𝑡 , i = 1,2 , the 𝑚𝑥𝑖
-length lead vector and the 𝐿𝑥𝑖

-

length lag vector of 𝑋𝑖,𝑡  are: 

𝑋
𝑖,𝑡

𝑚𝑥𝑖 ≡ (𝑋𝑖,𝑡 , 𝑋𝑖,𝑡+1, … , 𝑋𝑖,𝑡+𝑚𝑥𝑖
−1) , 𝑚𝑥𝑖

= 1,2, … , 𝑡

= 1, 2, …, 

𝑋
𝑖,𝑡−𝐿𝑥𝑖

𝐿𝑥𝑖 ≡ (𝑋𝑖,𝑡−𝐿𝑥𝑖
, 𝑋𝑖,𝑡−𝐿𝑥𝑖

+1, … , 𝑋𝑖,𝑡−1) , 𝐿𝑥𝑖
= 1, 2, … , t

= 𝐿𝑥𝑖
+ 1, 𝐿𝑥𝑖

+ 2, …, 

respectively. We denote 𝑀𝑥 = (𝑚𝑥1, … , 𝑚𝑥𝑛1
),  𝐿𝑥 =

(𝐿𝑥1, … , 𝐿𝑥𝑛1
) , 𝑚𝑥 = max(𝑚𝑥1, … , 𝑚𝑛1

),  and 𝑙𝑥 =

max (𝐿𝑥1, … , 𝐿𝑥𝑛1
).  The 𝑚𝑦𝑖

-length lead vector, 𝑌
𝑖,𝑡

𝑚𝑦𝑖 , 

the 𝐿𝑦𝑖
-length lag vector, 𝑌

𝑖,𝑡−𝐿𝑦𝑖

𝐿𝑦𝑖 , of 𝑌𝑖,𝑡 , and 𝑀𝑦 , 𝐿𝑦 , 𝑚𝑦 , 

and 𝑙𝑦 can be defined similarly. 
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Given 𝑚𝑥 , 𝑚𝑦 , 𝐿𝑥 , 𝐿𝑦 , and ℯ > 0, we define the following 

four events: 

{‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒}

≡ {‖𝑋
𝑖,𝑡

𝑀𝑥𝑖 − 𝑋
𝑖,𝑠

𝑚𝑥𝑖 ‖ < 𝑒, for any 𝑖 = 1, … , 𝑛1} ; 

{‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒}

≡ {‖𝑋
𝑖,𝑡−𝐿𝑥𝑖

𝐿𝑥𝑖 − 𝑋
𝑖,𝑠−𝐿𝑥𝑖

𝐿𝑥𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛1} ; 

{‖𝑌𝑡

𝑀𝑦
− 𝑌𝑠

𝑀𝑦‖ < 𝑒}

≡ {‖𝑌
𝑖,𝑡

𝑚𝑦𝑖 − 𝑌
𝑖,𝑠

𝑚𝑦𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛2} ; 𝑎𝑛𝑑 

{‖𝑌𝑡−𝐿𝑦

𝐿𝑦
− 𝑌𝑠−𝐿𝑦

𝐿𝑦 ‖ < 𝑒}

≡ {‖𝑌
𝑖,𝑡−𝐿𝑦𝑖

𝐿𝑦𝑖 − 𝑌
𝑖,𝑠−𝐿𝑦𝑖

𝐿𝑦𝑖 ‖ < 𝑒, for any 𝑖

= 1, … , 𝑛2} ; 
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where ‖∙‖ denotes the maximum norm which is defined as 

‖𝑋 − 𝑌‖ = max(|𝑥1 − 𝑦1| , |𝑥2 − 𝑦2|, … , |𝑥𝑛 − 𝑦𝑛|)  for 

any two vectors X = (𝑥1, … , 𝑥𝑛) and Y = (𝑦1, … , 𝑦𝑛). The 

vector series {𝑌𝑡}  is said not to strictly Granger cause 

another vector series {𝑋𝑡} if 

𝑃𝑟 (‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒|‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒, ‖𝑌𝑡−𝐿𝑦

𝐿𝑦
− 𝑌𝑠−𝐿𝑦

𝐿𝑦 ‖ < 𝑒, ) 

= 𝑃𝑟 (‖𝑋𝑡
𝑀𝑥 − 𝑋𝑠

𝑀𝑥‖ < 𝑒|‖𝑋𝑡−𝐿𝑥

𝐿𝑥 − 𝑋𝑠−𝐿𝑥

𝐿𝑥 ‖ < 𝑒)        

    (6) 

where Pr (∙ | ∙) denotes conditional probability. Applying 

(6), one has to use the following test statistic to test for the 

nonlinear Granger causality: 

 

√𝑛 (
𝐶1(𝑀𝑥+𝐿𝑥,𝐿𝑦,𝑒,𝑛)

𝐶2(𝐿𝑥,𝐿𝑦,𝑒,𝑛)
−

𝐶3(𝑀𝑥+𝐿𝑥,𝑒,𝑛)

𝐶4(𝐿𝑥,𝑒,𝑛)
)                 

  (7) 
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Readers may refer to Bai, et al. (2010, 2011, 2018) and 

Chow, et al. (2018) for the details of the equation (7). 

Under this setting, Bai, et al. (2010, 2011) prove that to 

test the null hypothesis, 𝐻0 , that {𝑌1,𝑡 , … , 𝑌𝑛2,𝑡} does not 

strictly Granger cause {𝑋1,𝑡 , … , 𝑋𝑛1,𝑡} , under the 

assumptions that the time series {𝑋1,𝑡 , … , 𝑋𝑛1,𝑡} and 

{𝑌1,𝑡 , … , 𝑌𝑛2,𝑡}  are strictly stationary, weakly dependent, 

and satisfy the mixing conditions stated in Denker and 

Keller (1983), if the null hypothesis, 𝐻0, is true, the test 

statistic defined in (7) is distributed as 

𝑁 (0, 𝜎2(𝑀𝑥 , 𝐿𝑥 , 𝐿𝑦 , 𝑒)). When the test statistic in (7) is 

too far away from zero, we reject the null hypothesis. 

Readers may refer to Bai, et al. (2010, 2011, 2018) and 

Chow, et al. (2018) for the details of the consistent 

estimator of the covariance matrix. 

 

The nonlinear causality test has the ability to detect a 

nonlinear deterministic process which originally "looks" 



 

24 

random. The nonlinear causality test is a complementary 

test for the linear causality test as linear causality tests 

could not detect nonlinear causal relationship while the 

nonparametric approach adopted in this paper can capture 

the nonlinear nature of the relationship among variables.  
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From literature we note an interest in analyzing the 

cross-correlation relationship. For example, Podobnik and 

Stanley (2008) propose a detrended cross-correlation 

analysis (DXA) to investigate power-law cross-

correlations between different simultaneously-recorded 

time series in the presence of non-stationarity.  Podobnik, 

et al. (2009) introduce a joint stochastic process to model 

cross-correlations. In addition, using stock market returns 

from two stock exchanges in China, Ruan, et al. (2018) 

employ the MF-DCCA to investigate the non-linear cross-

correlation between individual investor sentiment and 

Chinese stock market return. Zhang, et al. (2018) study the 

cross-correlations between Chinese stock markets and the 

other three stock markets. Xiong, et al. (2018) use a new 

policy uncertainty index to investigate the time-varying 

correlation between economic policy uncertainty and 

Chinese stock market returns. On the other hand, Wan and 

Wong (2001) develop a model to study the contagion 

effect. Cerqueti, et al. (2018) develop a model based on 
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Mixed Poisson Processes to deal with the theme of 

contagion in financial markets. Wang, et al. (2018) 

propose a non-Markovian social contagion model in 

multiplex networks with inter-layer degree correlations to 

delineate the behavior of spreading, and develop an edge-

based compartmental theory to describe the model. The 

nonlinear causality used in this paper could also be used to 

measure nonlinear cross-correlation to handle the 

nonlinear contagion effect. One could easily use or modify 

Equation (6) to deal with the nonlinear cross-correlation 

and the nonlinear contagion effect. 
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Linear Granger Causality Analysis using R 

 

Step 1: Install R 

 

First, download the latest version or R. R for 

Windows can be downloaded at https://cran.r-

project.org/bin/windows/base/ 

 

R is an incredibly powerful open source program for 

statistics and graphics. It can run on pretty much 

any computer and has a very active and friendly 

support community online. Graphics created by R 

are extremely extensible and are used in high level 

publications like the New York Times (as explained 

by this former NYT infographic designer). 

 

 

 

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
http://www.r-project.org/
http://book.flowingdata.com/
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The latest version of R is 3.6.0. Click the link 

“Download R 3.6.0 for Windows” to download and 

install.  

 

 

Figure 1. The R Console Screen 

 

1. Download R from http://cran.us.r-project.org/ (click on “Download R for 

Windows” > “base” > “Download R 3.6.0 for Windows”)  

2. Install R. Leave all default settings in the installation options. 

http://cran.us.r-project.org/
http://cran.cnr.berkeley.edu/bin/windows/base/R-3.6.0-win.exe
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We note while R installation is required, since 

RStudio is used in this illustration, opening R Console 

is not necessary.  
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Step 2: Install RStudio 

 

RStudio is the most popular open-source IDE 

(Integrated Development Environment) for R.  

 

It’s basically a nice front-end for R, giving you a 

console, a scripting window, a graphics window, and 

an R workspace, among other options. 

 

It provides more features from the user interface as 

well as being more user-friendly than the raw 

development environment comes with the base 

installation of R. 

 

 

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-

commander-windows-osx/ 

 
  

https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/
https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-r-commander-windows-osx/
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RStudio can be downloaded at 

https://www.rstudio.com/products/rstudio/download/

#download.  

 

Click the Download button below the “RStudio 

Desktop”. Choose the right version of installer for 

your operating system. 

 

 

 

 

Figure 2. RStudio Screen 

 

https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download
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1. Download RStudio 

from http://rstudio.org/download/desktop and 

install it. Leave all default settings in the 

installation options. 

 

 

RStudio 
Desktop 

Open Source 
License 

 

 

RStudio 1.2.1335 - Windows 7+ (64-bit) 

 

 

  

http://rstudio.org/download/desktop
https://download1.rstudio.org/desktop/windows/RStudio-1.2.1335.exe
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Step 3: Open the R File in RStudio  

 

To open the R script used in this illustration, click the 

File button in the top-left corner and then click Open 

File.  

Then browse to the folder where the R program is 

stored, select the file and click Open. 

 

 

 

Figure 3. Open R File in RStudio 
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Step 4: Prepare the Data 

 

The R Program consumes a data file which should 

have at least 2 variables in CSV format (with header). 

Save the data file to the same folder as the R file. In 

this illustration, the data for Indian as mentioned in 

the data section named ly (logarithms of real GDP 

per capita) and lm (logarithms of the ratio of bank 

deposit liabilities to nominal GDP) are used are 

included in the data file. 

 

 

 

 

Figure 4. Sample Data File for the R Script 
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Step 5: Run the R Script 

 

There are different ways in RStudio you can run R 

code. The first choice is to “source” the file, i.e. to 

evaluate all the R code in the opened file. Please 

click the Source button in the top-right side in the 

code editor. Alternatively, in Windows, you may press 

Ctrl + Shift + S to source a file. 
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Figure 5. Source R File in RStudio 

 

R, being a scripting language, can be run line by line 

or evaluate only selected area in your code. When 

only part of the code is to be evaluate, select the 

required part of the code, and then click R. 

Alternatively, in Windows, you may press Ctrl + Enter 

to run selected code. 

 

 

 

Figure 6. Evaluate Selected R Code 
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Execution result will be shown in the Console Pane. 

You are now ready to analyze the data interactively 

using R. 

 

 

 

Figure 7. The Console Pane in RStudio 
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Step 6: Data Analysis 

 

Install Required Libraries 

 

Before the analysis, it is required to first install the required 

libraries in R. 

 

R Code 

 

# A helper function to load and install packages 

 

load_package <- function (package) {  

  if (!require(package, character.only=TRUE)) { 

    install.packages(package, quiet = TRUE);  

    require(package, character.only=TRUE) 

  } 

} 

 

 A helper function is defined here to simplify the package 

installation process.  

 The function accepts an argument of the package name 

and tries to load the package.  

 If the package isn’t installed yet, it installs and loads the 

package into the environment. 
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R Code 

 

# Install and load the required R packages 

 

load_package("tseries") # For Unit Root Test 

load_package("urca") # For Cointegration Test 

load_package("vars") # For VAR 

load_package("fBasics") # For Descriptive Statistics 

load_package("rstudioapi") # To Detect Script Directory 

 

 

After that 5 packages are installed using the function.  

These packages are  

 tseries (for the unit root test),  

 urca (for cointegration test),  

 vars (for VAR estimation),  

 fBasics (for descriptive statistics),  

 rstudioapi (for a function detecting the script path). 
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Load Data 

 

 R Code 

 

script_folder <- 

dirname(rstudioapi::getActiveDocumentContext()$path) 

 

india_data <- read.csv(paste0(script_folder, "/india.csv")) 

 

india_data <- india_data[, c("ly", "lm")] 

 

This part of the code loads the data in CSV format named 

india.csv into the environment. 
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Descriptive Statistics 

 

R Code 

 

# Descriptive Statistics 

 

desc_stat <- basicStats(india_data) 

print(desc_stat) 

 

ly <- india_data[, "ly"] 

lm <- india_data[, "lm"] 
 

 

 

 
 

Figure 8. Descriptive Statistics Output 
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Unit Root Test 

 

R Code 

 

ly <- india_data[, "ly"] 

lm <- india_data[, "lm"] 

 

# Unit Root Test - ADF Test 

 

adf_ly <- adf.test(ly) 

adf_lm <- adf.test(lm) 

 

adf_dly <- adf.test(diff(ly)) 

adf_dlm <- adf.test(diff(lm)) 

 

print(list(adf_ly=adf_ly, adf_lm=adf_lm, adf_dly=adf_dly, 

adf_dlm=adf_dlm)) 

 

This part of the code first explicitly defines 2 variables from the 

dataset for better readability. ADF unit root test are then run to 

test for unit root in these variables. 
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Figure 9. ADF Unit Root Test Output 

 

For each variable in the testing, the ADF unit root test using the 

default configuration cannot reject the null hypothesis that the 

series contains a unit root. The unit root tests on the first 

difference of these variables show that both the first-differenced 

time series are stationary. 

 

The results show that both the variables ly and lm are I(1) at 5% 

level of significance. 
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For more information about the adf.test function, please see the 

document available at https://cran.r-

project.org/web/packages/tseries/tseries.pdf. 

 
 

  

https://cran.r-project.org/web/packages/tseries/tseries.pdf
https://cran.r-project.org/web/packages/tseries/tseries.pdf
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Cointegration Test 

 

 R Code 

 

# Cointegration Test - Johansen 

 

lag <- 5 # lag-length for the VAR system 

 

jotest=ca.jo(data.frame(ly, lm), type="trace", K=lag, 

ecdet="none", spec="longrun") 

jotest_summary <- summary(jotest) 

 

print(jotest_summary) 

 

The Johansen cointegration test results shows that these time 

series are not cointegrated at 5% level of significance. For more 

information about the ca.jo function,  

please see the document available at 

https://www.rdocumentation.org/packages/urca/versions/1.2-

9/topics/ca.jo. 
 

 

 
 

Figure 10. Johansen Cointegration Test Output 
 

https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo
https://www.rdocumentation.org/packages/urca/versions/1.2-9/topics/ca.jo
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VAR Estimation 

 

R Code 

 

# VAR Estimation 

 

var_data = data.frame(dly=diff(ly), dlm=diff(lm)) # First 

difference the data: I(1) and no cointegration at 5% 

significance level 

obs <- nrow(var_data) 

 

var_ldy_ldm <-VAR(var_data, p=lag, type="const") # 

Sample VAR Model Estimation 

print(var_ldy_ldm) 

 

 

Before we can conduct the Granger causality test, an VAR 

system is estimated.  

For more information about the VAR function, please see the 

document available at https://cran.r-

project.org/web/packages/vars/vars.pdf 

 
 

https://cran.r-project.org/web/packages/vars/vars.pdf
https://cran.r-project.org/web/packages/vars/vars.pdf
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Figure 11. VAR Estimation Result 
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Granger Causality Test 

 

 R Code 

 

granger.mpl <- function(data, restriction, causality, lag, 

Nobs, df, Nos) 

{ 

  var.u<-VAR(data,p=lag,type="const") 

  unrestricted<-det(cov(as.matrix(resid(var.u)))) 

   

  var.r<-restrict(var.u,method="man",resmat=restriction) 

  restricted<-det(cov(as.matrix(resid(var.r)))) 

   

  value.test<-(Nobs-lag-(1+lag*Nos))*(log(restricted)-

log(unrestricted)) 

  p<-pchisq(value.test, df, lower.tail=FALSE) 

   

  return(matrix(c(df,value.test,p),nrow=1, 

                byrow=TRUE,dimnames=list(c(causality),c("df", 

"chi^2", "p")))) 

} 
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# Linear Granger-causality Test 

 

## For M causes Y 

res1 <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1), nrow=2, 

byrow=TRUE) 

granger.mpl(var_data, res1, "Y <- M", lag, obs, lag, 2) 

 

## For Y causes M 

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5), 1), 

nrow=2, byrow=TRUE) 

granger.mpl(var_data, res2, "M <- Y", lag, obs, lag, 2) 

 

The Granger causality test results show that, the variable lm (M) 

Granger cause ly (Y) and ly (Y) does not Granger cause lm (M), 

at 5% level of significance. 
 

 
 

Figure 12. Granger Causality Test Result 
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Export the Residuals of the VAR System for Further 

Analysis 

 

 R Code 

 

var_resid <- resid(var_ldy_ldm) # Get the residuals from 

the VAR system 

 

# Export residuals for further processing 

 

write.table(var_resid[, 'dly'], file = paste0(script_folder, 

"/var_dly_resid.csv"), col.names = FALSE, row.names = 

FALSE) 

write.table(var_resid[, 'dlm'], file = paste0(script_folder, 

"/var_dlm_resid.csv"), col.names = FALSE, row.names = 

FALSE) 

 

Finally, the residuals are exported into 2 files separately to be 

used in the next part of the analysis. 
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Non-linear Granger Causality Test 

 

The sample program is written in C. The C/C++ 

languages are generally implemented as a compiled 

language, i.e. the source code of the program is 

compiled into machine code before executing. A 

C/C++ compiler is therefore required in order to 

execute the program. In this illustration, CodeBlocks, 

a user-friendly free and open-source IDE (Integrated 

Development Environment) is used to run the 

program to simplify the code execution process. The 

selected CodeBlocks installer comes with the GNU 

Compiler Collection (GCC)1, one of the most popular 

C/C++ compilers, as included in the bundled MinGW2 

development environment for Windows. 

  

                                            
1 https://gcc.gnu.org/ 
2 http://www.mingw.org/ 

https://gcc.gnu.org/
http://www.mingw.org/
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Step 1: Download and Install CodeBlocks 

 

Go to the official website of CodeBlocks: 

http://www.codeblocks.org  

 

Click the Binaries page link under Downloads in the 

main menu on the left hand side. Alternatively, direct 

go to this URL 

http://www.codeblocks.org/downloads/binaries and 

select the CodeBlocks version for your operating 

system. 

 

In this illustration, the version codeblocks-

17.12mingw-setup.exe is used. This setup file 

includes the G++ compiler, which is one of the most 

popular C++ compilers. 

 

The selected version of CodeBlocks can be 

downloaded directly form this URL at 

http://www.codeblocks.org/
http://www.codeblocks.org/downloads/binaries
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http://sourceforge.net/projects/codeblocks/files/Binar

ies/17.12/Windows/codeblocks-17.12mingw-

setup.exe 

 

After downloading the setup file, open it to install 

CodeBlocks.  

http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Windows/codeblocks-17.12mingw-setup.exe
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Step 2: Prepare the Source Code and Data Files  

 

Save the source code file to the same folder as the 

output files from the R code. There are three files 

involved, namely, the file of residuals generated from 

previous steps, i.e. var_dlm_resi.csv, and 

var_dly_resid.csv, the source code file of the C/C++ 

program, z.cpp. 

 

    z.cpp 

 

This is the source code of the program.  

 

    var_dlm_resid.csv 

 

 This is the data file to be loaded by the program 

as the data for variable x 
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    var_dly_resid.csv 

 

This is the data file to be loaded by the program 

as the data for variable y 

 

Configurations in the Source Code File (optional) 

 

There are some configurable parameters in the 

source code. 

 

Excerpts from Source Code: 

 

    #define Nobs    58 

    #define infile1  "var_dlm_resid.csv " 

    #define infile2  "var_dly_resid.csv" 

    #define outfile  "output.txt" 

 

    double epsilon=1.5; 

    int m=5; 
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- Nobs: the number of observations in the input 

files. 

 

- infile1: the name of the input file for the time 

series variable x. When running the program, the 

program expects there is a file named exactly as 

specified here to be used as the values of the 

time series variable x. 

 

- infile2: similar to infile1 - the name of the input 

file for the time series variable y. 

 

- outfile: the name of the output file. After 

successful program execution, an output file with 

the execution result will be generated. This 

parameter specifies the output file name. 
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- epsilon: the epsilon parameter used in the 

estimation. 

- m: the number of lags  

 

Replace these parameters with the desired values 

should there be any required changes in the names 

of the files, the number of observations or the epsilon 

parameter. 

 

Data Format of the Data Files (var_dly_resid.csv and 

var_dlm_resid.csv): 

 

 

Figure 8. Sample Data Format for the Input Files 
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In the input file is a single column of the time series. 

Each value in a row will be loaded as a data point for 

the corresponding time series. 
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Figure 10. Source Code and Data Files 

Step 3: Open the z.cpp source code file with 

CodeBlocks 

The required files and software are ready. Open 

CodeBlocks 
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Figure 11. Welcome Screen of CodeBlocks 
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In the upper-left corner, click File then click Open 

 

 

 

Figure 12. Open File in CodeBlocks 

Browse to the folder where the 3 downloaded files 

are saved. Then, select the z.cpp file and click Open. 
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Figure 13. Choose the Source Code File 
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The source code of the program is displayed inside 

the CodeBlocks editor. In case of any required 

change, for example, change of the sample size or 

names of the input files, please modify the parameter 

values accordingly and save. 

 

 

 

Figure 14. Code Editor in CodeBlocks 

  



 

64 

Step 4: Build the Code 

 

A build process is required in order to execute the 

C++ program. After the build process, an executable 

file, in our case z.exe will be created. 

 

Click the Build button 

 

 

 

Figure 15. Build Button in CodeBlocks 
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After the build completed, there are 2 new files in the 

folder, namely z.exe and z.o. 

 

The z.o file is an intermediate file produced during the 

build process. It is not directly executable but is used 

by the CodeBlocks IDE to produce the final 

executable program, i.e. the z.exe file. 

 

 

 

Figure 16. Generated Files after the Build Process 

Step 5: Run the Executable 

 

The executable program z.exe has been created 

from source code and is ready to be run. It can be run 
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by just double clicking the z.exe in the folder. 

Alternatively, using the CodeBlocks IDE, users can 

run the program by clicking the Run button in the user 

interface, as shown below. 

 

 

 

Figure 17. The Run Button in CodeBlocks 

 

After the program execution, the execution time is 

reported. The return value 0 signals the success of 

the program execution.  
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Press any key to close the prompt. 

 

 

 

Figure 18. Screen after Successful Run 

 

 

 

Step 6: Review the Output 

 

Finally, to view the execution result, go to the 

program folder. A plain text output file output.txt has 

been generated after the execution. (as described in 

the configuration section in Step 2, the output file 
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name can be configured as needed. The default file 

name is output.txt) 

 

 

 

Figure 19. Output File Generated from the Program 
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Open the output.txt to view the result. The output file 

reports the Sample Size, the Epsilon parameter value, 

the HJ Statistic and the P-value in a CSV (comma-

separated values) with header format.  

 

 

 

Figure 20. Result from the Program 
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Appendix 

Source Code of the R Program 

 

# A helper function to load and install packages 

 

load_package <- function (package) {  

  if (!require(package, character.only=TRUE)) { 

    install.packages(package, quiet = TRUE);  

    require(package, character.only=TRUE) 

  } 

} 

 

# Install and load required R packages 

 

load_package("tseries") # For Unit Root Test 

load_package("urca") # For Cointegration Test 

load_package("vars") # For VAR 
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load_package("fBasics") # For Descriptive 

Statistics 

load_package("rstudioapi") # To Detect Script 

Directory 

 

script_folder <- 

dirname(rstudioapi::getActiveDocumentContext(

)$path) 

 

india_data <- read.csv(paste0(script_folder, 

"/india.csv")) # Data file in the same folder as the 

R program 

 

india_data <- india_data[, c("ly", "lm")] 

 

# Descriptive Statistics 

 

desc_stat <- basicStats(india_data) 

print(desc_stat) 
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ly <- india_data[, "ly"] 

lm <- india_data[, "lm"] 

 

# Unit Root Test - ADF Test 

 

adf_ly <- adf.test(ly) 

adf_lm <- adf.test(lm) 

 

adf_dly <- adf.test(diff(ly)) 

adf_dlm <- adf.test(diff(lm)) 

 

print(list(adf_ly=adf_ly, adf_lm=adf_lm, 

adf_dly=adf_dly, adf_dlm=adf_dlm)) 

 

# Cointegration Test - Johansen 

 

lag <- 5 # lag-length for the VAR system 
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jotest=ca.jo(data.frame(ly, lm), type="trace", 

K=lag, ecdet="none", spec="longrun") 

jotest_summary <- summary(jotest) 

 

print(jotest_summary) 

 

# VAR Estimation 

 

var_data = data.frame(dly=diff(ly), dlm=diff(lm)) # 

First difference the data: I(1) and no cointegration 

at 5% significance level 

obs <- nrow(var_data) 

 

var_ldy_ldm <-VAR(var_data, p=lag, 

type="const") # Sample VAR Model Estimation 

print(var_ldy_ldm) 

 

granger.mpl <- function(data, restriction, 

causality, lag, Nobs, df, Nos) 
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{ 

  var.u<-VAR(data,p=lag,type="const") 

  unrestricted<-det(cov(as.matrix(resid(var.u)))) 

   

  var.r<-

restrict(var.u,method="man",resmat=restriction) 

  restricted<-det(cov(as.matrix(resid(var.r)))) 

   

  value.test<-(Nobs-lag-

(1+lag*Nos))*(log(restricted)-log(unrestricted)) 

  p<-pchisq(value.test, df, lower.tail=FALSE) 

   

  return(matrix(c(df,value.test,p),nrow=1, 

                

byrow=TRUE,dimnames=list(c(causality),c("df", 

"chi^2", "p")))) 

} 

 

# Linear Granger-causality Test 
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## For M causes Y 

res1 <- matrix(c(rep(c(1,0),5), 1, rep(c(1,1) ,5) ,1), 

nrow=2, byrow=TRUE) 

granger.mpl(var_data, res1, "Y <- M", lag, obs, 

lag, 2) 

 

## For Y causes M 

res2 <- matrix(c(rep(c(1,1), 5), 1, rep(c(0, 1), 5), 

1), nrow=2, byrow=TRUE) 

granger.mpl(var_data, res2, "M <- Y", lag, obs, 

lag, 2) 

 

var_resid <- resid(var_ldy_ldm) # Get the 

residuals from the VAR system 

 

# Export residuals for further processing 
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write.table(var_resid[, 'dly'], file = 

paste0(script_folder, "/var_dly_resid.csv"), 

col.names = FALSE, row.names = FALSE) 

write.table(var_resid[, 'dlm'], file = 

paste0(script_folder, "/var_dlm_resid.csv"), 

col.names = FALSE, row.names = FALSE) 
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Source Code of the C/C++ Program - z.cpp 

 

#include <stdio.h> // For file input / output 

#include <stdlib.h> 

#include <math.h> // Use Math Library for 

functions fabs, exp, etc... 

 

#define max(a,b) a>b?a:b 

#define Nobs     58 // Number of Observation 

#define infile1  "var_dly_resid.csv" // Input File 

Name - First Variable 

#define infile2  "var_dlm_resid.csv" // Input File 

Name - Second Variable 

#define outfile  "output.txt" // Output File Name 

 

double epsilon=1.5; // Epsilon Parameter 

int m=5; // Lag Length 

int n; 

double Q, **A, C[4]; 
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void redun(double *x, double *y, int N, int m, int 

mmax, double epsilon) 

{ 

 

  int i, j, s; 

  double disx, disy, disz, Cy, Cxy, Cyz, Cxyz; 

 

  Q=Cy=Cxy=Cyz=Cxyz=0.0; 

  n = N - mmax; 

 

  for (i=mmax;i!=N;i++) 

  { 

    for (j=mmax;j!=N;j++) 

    if (j!=i) 

    { 

      disx = disy = 0.0; 

      for (s=1;s!=m+1;s++) 

        disx = max(fabs(x[i-s]-x[j-s]),disx); 
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      for (s=1;s!=mmax+1;s++) 

        disy = max(fabs(y[i-s]-y[j-s]),disy); 

 

      if (disy <= epsilon) 

      { 

        Cy++; 

        A[3][i]++; 

 

        if (disx <= epsilon) 

        { 

          Cxy++; 

          A[1][i]++; 

        } 

 

        disz = max(fabs(y[i]-y[j]),disy); 

        if (disz <= epsilon) 

        { 

          Cyz++; 
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          A[2][i]++; 

 

          if (disx <= epsilon) 

          { 

            Cxyz++; 

            A[0][i]++; 

          } 

        } 

      }   // end condition |Yi - Yj| < epsilon 

    }   // end loop over j 

  } // end loop over i 

 

  Q = (double) Cxyz/Cxy - (double) Cyz/Cy; 

 

  C[0] = Cxyz/(double)(n*(n-1)); 

  C[1] = Cxy/(double)(n*(n-1)); 

  C[2] = Cyz/(double)(n*(n-1)); 

  C[3] = Cy/(double)(n*(n-1)); 
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  for (i=0;i!=4;i++) 

   for (j=mmax;j!=N;j++) 

   { 

     A[i][j] /= (double)(n-1); 

     A[i][j] -= C[i];  // C to A 

   } 

} 

 

/* normalise the time series to unit std. dev. */ 

 

void normalise(double *x, int N) 

{ 

  int i; 

  double mean=0.0, var=0.0; 

 

  for (i=0;i!=N;i++) 

  { 

    mean += x[i]; 

    var += x[i]*x[i]; 
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  } 

 

  mean /= (double)(N); 

  var /= (double)(N); 

  var -= mean*mean; 

 

  for (i=0;i!=N;i++) 

    x[i] = (x[i]-mean)/sqrt(var); 

 

  return; 

} 

 

// erf function (Error Function) 

 

extern double erf( double x ) { 

 

    double t, z, retval; 

 

    z = fabs( x ); 
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    t = 1.0 / ( 1.0 + 0.5 * z ); 

    retval = t * exp( -z * z - 1.26551223 + t * 

        ( 1.00002368 + t * 

   ( 0.37409196 + t * 

     ( 0.09678418 + t * 

       ( -0.18628806 + t * 

         ( 0.27886807 + t * 

    ( -1.13520398 + t * 

      ( 1.48851587 + t * 

        ( -0.82215223 + t * 

          0.1708727 ) ) ) ) ) ) ) ) ); 

    if( x < 0.0 ) 

        return retval - 1.0; 

 

    return 1.0 - retval; 

} 

 

int main() 

{ 
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  double x[Nobs], y[Nobs], *ohm, S2, \ 

    HJ_TVAL, HJ_Pval, d[4], sigma[4][4]; //hv; 

  int i, j, l, k, K, mmax;  //ieps, nn; 

  FILE *fil; 

 

  A = (double **) malloc(4*sizeof(double *)); 

 

  for (i=0;i!=4;i++) 

   A[i] = (double *) malloc(Nobs*sizeof(double)); 

 

  K = (int)(sqrt(sqrt(Nobs-m))); 

 

  ohm = (double *) malloc(K*sizeof(double)); 

 

  ohm[0] = 1.0; 

  for (k=1;k<K;k++) 

    ohm[k] = 2.0*(1.0-k/(double)(K)); 

 

  //get external data 
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  fil=fopen(infile1,"r"); 

 

  for (i=0;i<Nobs;i++) 

    fscanf(fil,"%lf",&x[i]); 

  fclose(fil); 

 

  fil=fopen(infile2,"r"); 

 

  for (i=0;i<Nobs;i++) 

     fscanf(fil,"%lf",&y[i]); 

  fclose(fil); 

 

  for (j=0;j!=4;j++) 

  { 

    C[j] = 0.0; 

    for (i=0;i!=Nobs;i++) 

      A[j][i] = 0.0; 

  } 
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  normalise(x, Nobs); 

  normalise(y, Nobs); 

 

  mmax=m; 

 

  redun(x,y,Nobs,m,mmax,epsilon); // call the 

redun function defined above 

 

  for (i=0;i!=4;i++) 

    for (j=0;j!=4;j++) 

    { 

      sigma[i][j] = 0.0; 

      for (k=0;k!=K;k++) 

        for (l=mmax+k;l!=Nobs;l++) 

          sigma[i][j] += 4.0*ohm[k]*(A[i][l]*A[j][l-

k]+A[i][l-k]*A[j][l])/(double)(2*(n-k)); 

    } 
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  d[0] = 1.0/C[1]; 

  d[1] = -C[0]/(C[1]*C[1]); 

  d[2] = -1.0/C[3]; 

  d[3] = C[2]/(C[3]*C[3]); 

 

  S2=0.0; 

  for (i=0;i!=4;i++) 

    for (j=0;j!=4;j++) 

       S2 += d[i]*sigma[i][j]*d[j]; 

 

  HJ_TVAL = Q*sqrt(n)/sqrt(S2); 

 

  // CDF 

  if (HJ_TVAL>0) 

    HJ_Pval = 0.5 - .5*erf(HJ_TVAL/sqrt(2.0)); 

  else 

    HJ_Pval = 0.5 + .5*erf(HJ_TVAL/sqrt(2.0)); 

 

  fil=fopen(outfile,"w"); 
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  fprintf(fil, "SampleN, Epsilon, HJstat, P-value\n"); 

  fprintf(fil, "%i,%f,%f,%f\n", Nobs, epsilon, 

HJ_TVAL, HJ_Pval); 

  fclose(fil); 

 

  return(0); 

} 
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C / C++ Quick Reference 

 

#include 

 

The #include directive is a preprocessor 

command (which tells the compiler to do 

something before the actual compilation process) 

to include the file as specified to the current point). 

For example, it is the line “#include <math.h>” at 

near the top of the source code that make 

necessary math functions such as exp 

(exponential) and sqrt (square root) available in 

the program. 

#define  

 

 A preprocessor command to define a macro. 

It can be used to define constants to be 
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substituted by the specified value in the source 

code.  

 

For example the line “#define Nobs     58” in 

the source code instructs the preprocessor to 

substitube “Nobs” with 58 in the program. A 

macro can also be parameterized as in the line 

“#define max(a,b) a>b?a:b” 

 

Comment  

 

Use “//” for Single line comment. Any string in the 

same line after “//” is regarded as comments and 

will be ignored by the compiler. 

 

Use “/* …. */”  for multiple line comments. Any 

string between “/*” and “*/ is regarded as 

comments and will be ignored by the compiler. 
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Entry Point of a Program 

 

 

The function main() is the entry point of the 

program.  

 

If-statement 

 

 

If (condition)  statement  

// the statement will be executed if the 

condition is true 

 

 

 

 

 

If (condition) { 
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 // statements to be executed if the condition is 

true 

 

} 

 

 

 

 

 

If (condition) { 

 

 // statements to be executed if the condition is 

true 

 

} else { 

 

 // statements to be executed if the condition is 

not true 
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} 

 

 

 

 

 

If (condition_1) { 

 

 // statements to be executed if the condition is 

not true 

 

} else if (condition_2) { 

 

 // statements to be executed if the condition_1 

is not true  

           // and the condition_2 is true 

 

} else { 
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 // statements to be executed if all the 

conditions above 

// i.e. condition_1 and condition_2 are false 

 

} 

 

 

 

 

For-loop 

 

for ( initialization_step; condition; increment ) { 

 

 // statements to be executed if the condition is 

true 

 

} 
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In a for loop, the initialization step is first run to 

initialize the counter. If the condition is true, the 

statements inside the for loop are executed, and 

then the increment step is run to update the 

counter. 

 

For example,  

 

#include <stdio.h> 

 

int main() 

{ 

     

    for (int i = 0; i < 5; i++) { 

        printf("%d\n", i); 

    } 

     

    return 0; 

} 
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Output: 

 

0 

1 

2 

3 

4 

 

The initialization step declare the counter i and 

set it as 0 (the initialization step int i = 0). The loop 

run as long as the counter i is less than 5 (the 

condition i < 5). After each loop the counter is 

increased by 1 (the increment step i++). The loop 

terminates as the i is increased to 5 and no longer 

prints the digit. In the above example, the “\n” in 

the first argument to the printf function is a new 

line character, and therefore in each loop the 



 

97 

counter i is outputted to a new line. The result in 

this example is the same if the condition is  i != 5. 

 

Assignment Operations 

 

Expres

sion 

Explanation 

a = b assign the value of b to the variable a, not 

to be confused with the expression of the 

equality between two variables. 

a = b = 

0 

assign the value 0 to variables a and b 

a += b equivalent to a = a + b 

a -= b equivalent to a = a - b 

a *= b equivalent to a = a * b 

a /= b equivalent to a = a / b 
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a++ return the value of a and then increase the 

value of a by 1 

 

Comparison Operators 

 

A logical comparison returns a boolean value true 

or false depending on the truth value of the 

expression. 

 

Expres

sion 

Explanation 

a == b a is equal to b 

a != b a is no equal to b 

a < b a is less than b 

a > b a is greater than b 

a <= b a is less than or equal to b 
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a >= b a is great than and equal to b 
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Useful Math Functions as Defined in math.h 

 

Functio

n 

Explanation 

exp return the number of the constant e raised 

to the power to a floating-point number 

sqrt return the square root of a floating-point 

number 

fabs return the absolute value of the given 

floating-point number argument 

 

 

 


